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A STOCHASTIC FINITE ELEMENT METHOD FOR
STOCHASTIC PARABOLIC EQUATIONS
DRIVEN BY PURELY SPATTIAL NOISE

CHIA YING LEE AND BORIS ROZOVSKII*

ABSTRACT. We consider parabolic SPDEs driven by purely spatial noise,
and show the existence of solutions with random initial data and forcing
terms. We perform error analysis for the semi-discrete stochastic finite el-
ement method applied to a class of equations with self-adjoint differential
operators that are independent of time. The analysis employs the formal
stochastic adjoint problem and the corresponding elliptic error estimates to
obtain the optimal order of convergence (in space).

1. Introduction

In this paper, we discuss stochastic finite element approximations of the follow-
ing parabolic SPDE driven by multiplicative purely spatial noise W (x),

du

E+Au+(/\4u+g)<>m'/(gc):f on D x (0,T] (1.1)
’u,|aD =0
Ulpmo = ¥

where A, M are second order partial differential operators, and ¢ denotes the Wick
product (see e.g. [4], [5], [6], [7]). The stochastic finite element method (SFEM)
for elliptic equations has been studied in [14], where the error estimates were
derived in an appropriately weighted stochastic space. The approach taken there
was based on Malliavin calculus and the Wiener Chaos expansion (see e.g. [11],
[12]) and that is also the approach we will adopt. In fact, to obtain error estimates
in the parabolic case, we will make integral use of the results from the elliptic error
estimates, both directly from [14] as well as further results which we will derive in
this paper. Thus, our error analysis can be viewed as a stochastic generalization
of the standard techniques from deterministic FEM theory for parabolic equations
[13].

The Malliavin calculus provides a tool to investigate the SFEM in an analogous
way to the deterministic FEM. This approach reexpresses the Wick product in
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the form of Malliavin divergence operator, (Mu + g) o W (z) = Oy (2 (Mu + g).
As shown in [10], (1.1) is equivalent to a lower triangular system of deterministic
parabolic PDE, known as the propagator system. Thus, the SFEM discretizes the
randomness by a Galerkin approximation of the propagator system, and thanks
to the lower triangular property, the SFEM reduces to an iterative procedure of
applying the deterministic FEM to each equation in the truncated propagator sys-
tem recursively. As in the elliptic case, our parabolic error estimates are comprised
of two terms. One term represents the error from the stochastic truncation, while
the other term represents the error from the application of the deterministic FEM
to each equation in the truncated propagator system. Our error estimates achieve
optimal spatial order of convergence, by analogy with the deterministic case; that
is, for the spatial variable of the error measured in the L? norm, the convergence is
O(R™*+1) for a solution u with spatial smoothness of H™*2 and with H™-smooth
time derivative wu;.

Since the spatial regularity of the solution is imperative for the fast convergence
of finite element schemes, it is also necessary to determine when the weak solution
of (1.1) is also smooth. We will see that certain compatibility conditions at time
t = 0, beyond those required in the deterministic case, are necessary for higher
regularity to hold. Existence and uniqueness results for (1.1) have been studied in
[10] under the assumption that v and f are deterministic and g = 0. The SFEM
elliptic error estimates in [14] also considered deterministic forcing term. By the
nature of our error analysis technique, the error estimates for the case of random
input data may be obtained with equal ease as for deterministic input data. Thus,
we immediately consider the error estimates for (1.1) with random input data, and
for this to make sense, we extend the existence and uniqueness result to allow for
v, f,g to be random.

The framework of the Malliavin calculus is briefly described in Section 2. Section
3 deals with the existence of solution of equation (1.1), and gives a discussion
on when the solution will be smoother in the spatial variable. The stochastic
finite element method is detailed in Section 4, in which the statement of the main
theorem on the parabolic error estimate is given. Section 5 discusses two issues
relating to the corresponding stochastic elliptic problem — the formal stochastic
adjoint problem and the extensions of the SFEM error estimates for the stochastic
elliptic problem, both of which are ingredients of the proof of the main theorem
in Section 6.

2. The Malliavin Calculus Framework

In this section, we describe the Malliavin calculus framework that we will use in
the rest of the paper. Let (2, F,P) be a probability space, where F is the o-algebra
generated by € = {{x}r>1. Let U be a real separable Hilbert space with complete
orthonormal basis {ug}r>1. In particular, since we are considering purely spatial
noise, we will take U« = L?(D), for a domain D C R?, and assume uy are smooth.
The Gaussian white noise on U is W (x) := 3,5, &kt ().

Given a real separable Hilbert space X, let Lo(€2; X) be the Hilbert space of
square-integrable F-measurable X-valued random elements. The Cameron-Martin
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basis is 2 = {&n, a0 € T}, where £, =[]+, Ho (&0) ong H,, is the n-th Hermite
) ) > N
polynomial, and J = {a = (a1, @2,...)} is the set of multi-indices.

We now introduce the weighted Wiener Chaos spaces. Let R be a bounded
linear operator on Lo(f2) defined by RE, = 7., for every a € J, where the
weights {r,,a € J} are positive numbers. The inverse operator R~! is defined
by R™1¢, = r,1¢,. We define the space RLy(£2; X) as the closure of L?(§)) under

the norm
Hf”?sz(Q;X) = Z ||faH§(7’i

acd
for f = 3, c7 fala- In other words, the elements of RLy($2; X) is identified
with a formal series ) 7 fala, where Hf||$€L2(Q_X) < 0. Clearly, RL2(9; X)
is a Hilbert space with respect to || - [|rr,(0;x)- Suppose X — Y — X' is a
normal triple of Hilbert spaces. We define the space R™1Ly(£2; X) as the dual
of RLy(2; X') relative to the inner product in the space La(€2;Y). The duality
pairing is given by

(LI RLa (X )R-1La(sx) = E[(Rfas R™ ga) x7 x] = Z(fmga>X/,x
acJ
for f € RLy(Q; X’) and g € R™1Lo(Q; X). Similarly, R~ Ly(2; X') is defined as
the dual of RLy(€2; X) relative to the inner product in La(€;Y).
In our paper, we will consider only admissible weights of the form

2 _ P
(03 |a" )

r

where p = (p1,p2,...), and p® := [], pp*. This class of weights are natural for
the multiplicative noise structure appearing with the second order operator M in
(1.1) [10].

Next, we define the Malliavin derivative D¢, and Malliavin divergence operator
as follows

Dy, (‘fa) = Varba-—cy» 5& (fa) = vVag + 1aqe,-

Here, ¢ is the multiindex with 1 in the k-th entry and zero elsewhere. The
Malliavin derivative and Malliavin divergence operator can be extended to random
elements in RL2(£2; X). In particular, for f € RLy(; X ®@U), &y, (f) is the unique
element of R Ly (2; X) with the property

¢

k

<<5W(f)’ ¢>>RL2(Q;X),R*1L2(Q;X’) = <<f7 DW<'O>>RL2(Q;X®Z/{),R*1L2(Q;X’®M)

for every ¢ € R™1Ly(; X') such that Dy, € R™1Lo(; X' @ U). Thus, the
Malliavin derivative and Malliavin divergence operator are adjoint to each other.
For a given g € RLy(€); X), we also write &, (g) to mean &y, (>, Y ) /¥kga ®
ukfa), and write gi,o = U ® ga-

3. The Stochastic Parabolic Problem.

In this section, we consider the stochastic parabolic problem with zero Dirichlet
boundary conditions, and state the conditions needed for the existence of a weak
solution as well as for a solution with higher spatial regularity.
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Let D C R? be a bounded domain, and let A be a second order elliptic operator
from H}(D) into H=Y(D), and My, k = 1,2,..., be bounded operators from
H}(D) into H=(D). We will assume that the boundary dD and the coefficients
of A, My, are sufficiently smooth, and also that A, M}, do not depend on time. In
the future, we will encounter the constants C4 and )\5:), which arise in

1wl 2(0,r:13(0y) < Calllwollr2(py + 1 fllL20, 1,51 (D))

for the weak solution w of the Dirichlet problem % + Aw = f with w(0) = wo;
and in

| Myl oy < N Nwllirpy,  Vw € HY(D).

For brevity, we write Ay = )\,(Cl).
The stochastic parabolic problem is

d
d—?—kAu—i-&W(Mu—kg):f on D x (0,T] (3.1)
u|3D = 0
ufg=0 = v

where M = (M, My,...), and Mu := ), Mju ® uy. The input data (i.e. the
initial conditions and forcing terms) are allowed to be random.

In the future, we will use shorthand to denote the spaces: for example, we
will write RoL2Hy' to denote RLo(Q; L2((0,T); H~Y(D))). Also, Hly denotes
HY(D).

Definition 3.1. A weak solution of (3.1), with f,g € RQLzTH;(l and v € RoL%,
is a process u € RoL2Hly such that for every ¢ € R, with Dy, ¢ € Rg'U,

t t
(Cult),8) = (o, 6)) = [ ((Aut by (Mu+ ) s+ [ (f.o)ds (32
0 0
with equality in LZHy.
The Equivalence Theorem 3.2 relates the weak solution to the propagator sys-
tem (3.3).

Theorem 3.2. The process u =Y. uala € RoL3HJy is a solution of (3.1), if
and only if, for each o € J,

0alt) = 00 = [ Auals) + 30 VA Muttar + g0 )dst [ fulodds (33)

k>1
holds in Hy" for a.e. t € [0,T).
Proof. See [10]. O

3.1. The existence and uniqueness theorem. The existence and uniqueness
of a weak solution of (3.1) for v, f deterministic and g = 0 has been shown in [10].
We show the existence theorem for when v, f, g may be random, and determine
the conditions for the weighted spaces that u may belong to, in terms of the spaces
that the input data belong to.
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Theorem 3.3. Let the weights R, with r2 = € satisfy

!

> aCiN < 1. (3.4)

E>1
(1) If the data v € L% and f,g € LQTH)_(1 are deterministic, then there exists
a unique weak solution u € RoL%.Hgy, and

lllrazs sy, <€ (Il + 10 mz + lols et

T°70X

where C' depends only on R, A, M and T.
(2) Assume v € RoL% and f,g € RoL2Hy"' for some 72 = \poT!' Also
assume, in addition to (3.4), qx are chosen to satisfy

Yoo (3.5)
k1 Pk

Then there exists a unique solution u € RoL%Hly, and

lellrarz gy < € (Iolrazs, + 17 lzgrs sz + lollegrs s
where C depends only on R,R, A, M and T.

Proof. The proof proceeds along the usual steps, (see e.g. [8] (Theorem 9.4) or [9]
(Proposition 4.2)).

Step 1.
Assume v, f, g are non-random. This case has been studied in [10] for g = 0. The
proof here is essentially the same. The propagator system is

U(g) (t) v+ /0 Au ) (s)+ f(s)ds
Ue, (1) = /0 Aug, (s) + (Mru)(s) + gr(s))ds

Uey (t)

t
/ Aug(s) + Z VagMptg—e, (s)ds, |a| >2
0 k

An explicit formula for the chaos coefficients is (c.f. proof of Theorem 3.11 in
[10])

¢
u(o)(t) = ®rv Jr/o D, f(s)ds

and for |a] = n,

““(t):\/lag;n/ot/osn“'/j

q)t—sang(n) o (1)32—51 (ng(l)U(O)(Sl) + gka(1))d51 ... dsy,

Here, K, = (k1, ..., k|a|) is the characteristic set of a, P, is the group of permu-
tations of {1,...,n}, and ®; is the semigroup generated by A.
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By induction, and by application of the deterministic parabolic estimates, we
obtain

lwwllzz g, < Callvllez +1f1lLz g0

T 70X
XCA Ot|0¢|!
lwallpz ms, < cAM(ngmi 11 £l =t + 0z zt)

where M = sup,(1V X&), and py is the constant in ||gk||H)_(1 < ,uk||g||H)_<1. So
taking the weights to satisfy (3.4), it follows from Lemma B.1 that

lullrgrzmy, < CUlrz +11f 2 m + 19002 m50)

C depends only on R, A, M and T.

Step 2.
Fix an arbitrary o* € J. Assume v = VE&u«, f = F&u+,g9 = G&4+; in other words,
the randomness of the data is localized to a single mode. Let u[a*; V, F, G](¢t, x)
be the solution. By linearity, the chaos expansion coefficients with indices of the
form a* + « satisfy

Uarta 0™V, F, G| Ua[(o);\/% £ \/%]

» Jarl?
(a* + a)! Va!

and are zero otherwise. Then

W

T
[ o+ VP G0 gyt

¢t (o 4+ a)! 4 F G
—lo*+afl o "Varl Vol Varl

o +a | * * |
0 Jalllo’]! (0" + ) 2
=2 Lo Jual(0): Vi .G s

2

w |

LEHyx

a*la* + ol ala!

q 2
< [ar ! [u[(0); V, F, Gl g2 1z,
where the last inequality follows by Lemma B.2.
Step 3.
For the general case with random data, assume v € RoL% and f,g € 7_QQL2TH;(1.
The solution can be written as

U= Zu[a*;va*7fa*aga*]

a*

Using the estimates from Step 2,

2 gyl
T 10X RalzpHyx

||UHRQL2 H} S Z ||u[a*;va*afa*aga*]
o
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oz*| * 1/2
g~ |a*|!
SC@M )

pOL

e ) 1/2
x| 2 oy (e g, + ol g + ol g )
~

< C (Iohrazs, + 1 lzgrznz +19lmorznst)

where we have applied Cauchy-Schwartz inequality in the second inequality. The
" lar]!
a* |a*|| poc*

convergence of (Z ) follows from a sufficient condition such as (3.5).

Clearly, R 2 R, so u is a weak solution of (3.1) in the sense of Definition
3.1. Uniqueness follows from the uniqueness of each equation in the propagator
system. O

Remark 3.4. (1) The validity of the assumption that M := sup,(1V %) < oo arises
in some common examples. For example, taking My¢ = upA¢ and g = ugg, we
have that p;, Ay are both ~ O(k). If M = oo, then in the estimate for [lua |2 1

in Step 1, we should replace the factor MX® by (XC4 V [i)®, and use the criterion
>k ak(ACa V pg)? < 1 in place of (3.4).

(2) If the input data is non-random, then it belongs to any weighted space R
for any p. In this case, condition (3.5) is automatically satisfied, and the condition
for optimal solution weights R reduces to (3.4) alone.

3.2. Higher spatial regularity of solutions. The weak solution of (3.1) is
a generalized process on H}y. We can ask the question of when the solution
is actually a generalized process on a better space HY. This result is actually
important for the error analysis of the stochastic finite element method later on,
which requires that u, us, uzs be Lo functions in the spatial variable. This higher
spatial regularity of the solution follows from analogous results in the deterministic
case, but comes at the expense of worsening the weights R.

We first recall a higher regularity result in the deterministic case, in which cer-
tain compatibility conditions are necessary conditions for higher spatial regularity.

Theorem 3.5. (Evans [3], Thm 5 and 6 in §7.1.3). Suppose u € L3HJy with
uy € L2HY' is the weak solution of

u+Au=f in D x (0,7

u=0 on 0D x [0,T)
u=v on D x {t =0}

(i) Assume
v € Hyy, felirk.

Then in fact w € LAH% N L H}y and uy € L3L%, and

ess sup (Ol + lullgrg + lalzgeg, < G5 (Wlgy + 171255,

where the constant C;*Y depends only on D, T and A.
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(i) Fizxm > 1. Assume
ve Hym (f[le{ € L2HY % fork=0,....,m
and suppose the m-th order compatibility conditions hold:
{ vo=Vo € Hly, Vi:=f(0)— AV, € Hl,

Vi o= S — AV, € HY
eV = mer — m—1 € Hgx
2m—2k
L3 HY" )

From Theorem 3.5(i), we can obtain the following higher regularity result for
the stochastic equation (3.1), with deterministic input data. The case of random
data can be shown in the same way as Steps 2 and 3 in the proof of Theorem 3.3.

Then 4% € LZHY" "> for k=0,...m+1, and

dtk
m
< e (llvllH;m+1 +
k=0

m
where the constant C)9 depends only on m, D, T and A.

du
dtk

&f

dtk

>

k=0

2 2m—+42—-2k
LTHX

Below, we will encounter the constant 9,(:)7 r=0,1,..., arising in ||gx||ry <
0 gl -

Corollary 3.6. Suppose u € RoL%H}y is the weak solution of the SPDE (3.1).
Also assume that v, f, g are deterministic with

vE Hiy, and f,g€L3L%
Then for the weights R satisfying

DA NC ) < 1,
k
the weak solution u € RoL%H% and

lllg iz, < C (I0lam, + 1 02a.c3 + gz o2, )

Proof. The proof is similar to the proof of Theorem 3.3. The estimates for each
U, are obtained by applying Theorem 3.5(i) to the propagator system. (]

No special compatibility conditions were necessary for Corollary 3.6, but it is
unable to ensure boundedness of u;. Thus, we next show how to obtain a smoother
solution and the boundedness of u;; using the 1st order compatibility conditions.

Corollary 3.7. Suppose u € RqL2H}y is the weak solution of the SPDE (3.1).
Also assume that v, f,g are deterministic with

df dg
dt’ dt
and that the 1st order compatibility conditions hold for {v, f, gr}:

v € Hiy, f(0)—Ave Hly,
Mo+ gx(0) € Hiy VE=1,2,...

veHY, and f,g€L2H%, and € LAL1%,

(3.6)
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Then for the weights R’ satisfying
2
S (A vaR)er) <1, (3.7)
k

the weak solution u € R LAH%, us € RLAH% and uy € RGL2L% and
lullry, 2 s + llwellry, L2 52 + lluellry, L2 12
< C(lollgs +1fllzzmz + lgllcz a2 + I felloz oz + lgellzz 22

Proof. For a = (0), the (deterministic) compatibility conditions hold, and from
Theorem 3.5(ii),

lwoy oz ma + llwoy,ell oz a2 + lwo),ellz. o2

< O3 (ol + 1Flagms, + 1Fellrg az,) -

For a = ¢, since we have assumed the coeflicients of My to be sufficiently
smooth (e.g., at least W)?’{’OO), s0 u(o) € L3 HY implies that Myuo) +gr € L3H%,
and u(y ¢ € L3 H% implies that (Myu) + gr)¢ € L5L%. The compatibility
conditions for (M) +gr) ’t:O = Myv+ g (0) are also satisfied. Again applying
Theorem 3.5(ii),

ez my + [(ue)ellzz g + 1(uey)eellzz o3,

re 4 2 2 0
< 07 (MO Nullug g, + 07 190 3.z, + A (o)l oz + 08 Noul s 2, )

< OO V)M
X (”UHH;{ WA llezmz + I fellzz s, + l9llz a2 + HgtHLQTLﬁ()

ABVAR)

where M = sup, {1 Vv ©@Pve@)crT

}. (The remark following Theorem 3.3 ap-
plies.)

For |a| > 2, we have Myuq—c, € LEH% and (Mpug—c, )¢ € LEL%. The
compatibility conditions hold trivially, since uq—e, | 1—o = 0 whenever || > 2. The
usual computations give the estimates,

222 + e, el 2 12

< C{egﬁ (CIeg(/\(Zl)v\/;‘)‘(?))) |04|'
(e}

% (ellirg, + 1z + il oo, + lollegas + loelzars, ) -

uallzz ma + [lta

The weighted norm [|u||r; 12 g4 < oo provided (3.7) holds. O

Due to the lower triangular property of the propagator system, the first order
compatibility conditions for the stochastic parabolic equation involve additional
conditions on the input data compared to the deterministic case. If the input
data is smoother than what is assumed in Corollary 3.7, additional compatibility
conditions on the derivatives {DYv, D7 f, DVg} are required to further raise the
spatial regularity of u,u; and wus, even if the boundedness of time derivatives
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beyond wu; are not needed. If the input data is random, similar arguments as
Steps 2 and 3 in Theorem 3.3 extends Corollary 3.7 to the random input data
case, this time with additional compatibility conditions on the modes {vq, fo, Ja }-
These results are summarized in the following theorem.

Theorem 3.8. Suppose u € RolL%H}y is the weak solution of the SPDE (3.1).
For fixed m > 2, also assume that
df dg
dt’ dt
and that the compatibility conditions (3.6) hold for {D7Vvy, D7 fo, DV gk o}, for all
a € J, and all indices v = (y1,...,7v4) with |y] <m —2.

Then for the weights R’ satisfying

/
Zp;c((Agf) vAg))clregf <1 and Y Zi <1, (3.8)
k & k

vE€RQHYT, and f,g€ Rol3HY, and € RoL3HY 2,

the weak solution u € R L2HYY?, u, € RGLAHY and uy € R LA2HY ™2 and
||UHR§7L2TH;;+2 + lwellry, L2 + HuttHRgZLZTH;g*?
< C(””Hfan;ﬁl + 1l rqrzap + |9l gLz
Il ellzg 2. -2 + 19t g 2. 1m-2)-

This is the basic structure of the smoothness assumption we will make when
performing the error analysis for the SFEM.

4. Stochastic Finite Element Method

The stochastic finite element method adopts the same strategy as the deter-
ministic situation, by casting the weak formulation of the problem into a finite
dimensional setting. We consider only the semi-discrete case in this paper, where
we have kept the time variable continuous and discretized the stochastic and spa-
tial variables only, thus yielding a system of ODE; this discretization is achieved
by Galerkin approximation in randomness and finite element approximation in
space. Subsequently, the fully discrete case can be done by applying a suitable
time stepping algorithm to the system of ODE.

Finite element approximation in space. We recall the usual finite element set
up. Let (K,c5,P,N) be a reference finite element. Let 7, be a family of quasi-
uniform triangulations. For K € Ty, let S& = {2 : 20 Fi' € P(K,cf)} where
Fg : Krey — K is affine. The finite element space is

Sy = {Z € H&(D) : Z|K € S;IL(,K S /Th}
A property of S}, we assume is that there exists » > 2 such that for h small,

11612 {||v — zpllL, + R|IV(v — zh)||L2} < ChP|jv||gs, for1<s<r (4.1)
Zh h

whenever v € H" N H} [13]. We also assume that, in particular, Sj, consists of
piecewise polynomials of degree at most r — 1, so that the inverse inequality holds,

||Vzh||L2 < C’h_lnz’hHLz7 Vzp € Sh.
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We denote the FE basis of S, by {®;}i1=1,... dim s, -

Galerkin approximation in randomness. Letting

Ium ={y €T : 1] <n, dim(y) < M},
we define the truncated Wiener chaos space
sin={f="3 & [, eR}.
YEIM,n
SFEM formulation. The stochastic finite element method is
Find uhM" € S, @ SM™ such that

dup"" Mn a Mn
(—h— am)pgios, + ((Auy™" + ;agk (M, + gr), 20)) gz e
= (({f, Zh>>R£1H§1 (4.2)
for all z;, € SM™ ® S, and for every t € [0, T).
Denote uhM” = > eum ., Uy Solving (3.2) via the SFEM is equivalent to
solving each equation in the truncated propagator system via FEM: for a € Jps p,
dio X
(=52 2n) + Alio), 2] = (F, 20, (43)
di M
(7;7 zn) + Alla, 2] + Z Vi (Myla—c,, zn) + (Gra—ers 20) = (fa, 2n),
k=1

(4.4)

for all z;, € Sy, with initial conditions @ |i=¢ = v%’f. The bilinear forms A, M
are are the bilinear forms associated with A, M. ,

The algorithm. Next, we write out the SFEM algorithm explicitly to show the
resulting system of ODE. We define the mass and stiffness matrices identically to
the usual FEM case, and also a noise matrix arising from the stochastic term:

mass _ (q)l) (I)l’)a M‘;,tliff = A[(I)l, <I>l,], Z’sé?e = Mk[q)h (I)l’]'

The lower triangular discrete propagator system is solved iteratively. For the

numerical solution u) " (t) = > e Tun A S, 1 () B, let the solution vector

be 67 = (fiy1s- -y Uydims, )" - Then, for v = (0),
Mmass(ﬁ(o))t + Mstiffﬁ(o) _ fEO)
and for || > 1,

— — — —

M5 () + Mmffuv + Z V7 (MnOiseuvfsk + gk,vfsk) = fy
k

where

ﬁy:(<f'y,(I)l>,~-~7<f'y,(I)dimSh>)T» and

gk,v = ((91@#7 <I>1>, SRR <9k,77 q)dimSh»T-
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Error analysis. The error analysis relies on decomposing the approximation
error into two contributors
up " (8) = ult) = (uy"" = U) + (U = u) = 0(t) + 7(1)
for some carefully chosen U in a subspace of RQLzTH&X. Two possible choices of
U are
(1) U =1u:= 3 cs,, u&, the truncated Wiener chaos expansion of u.

Then 6, is the error from the FEM approximation of the y-th equation in
(4.3), and 7 is the error from truncating the Wiener Chaos expansion of

u.

(2) U= H}Il/l’"u, where HhM’” : RLy(Q; HY) — M7 ® S}, is the SFEM solution
operator for the corresponding stochastic elliptic problem. Then 7 is the
error from the associated elliptic problem, whereas 6 is the error between
the parabolic and elliptic approximations.

We will adopt the second approach for our error analysis.

4.1. Error analysis. For the error analysis, we assume A and M take the form

Au = — Z D;(a" (z)Dju)

Myu = Z D; (o} (z)Dju)
2%
where a¥, O'Zj are measurable and bounded in D, and A is uniformly elliptic with
coercivity constant C5e™. Also, ' = (C7¢)~1 is the constant in lwlle, <

C’Z”iprHH)_(l for the solution of the zero Dirichlet problem Aw = f. We also
assume for simplicity that g = 0.

We now derive the error estimates for the parabolic equation (3.1). The error
en(t) == uhM"(t) — u(t) will be measured in the RqL%-norm for every t € (0,7,
and we will determine the conditions on the weights R that admit these error
estimates.

Theorem 4.1. Let m > 2 be an even integer. Assume for the input data
RS QQH;?—H, fe QQL%H;?, ft € ﬁQL%H;?_Q,
with weights 72 = %T!, and assume that the appropriate compatibility conditions
hold, so that
u€ RGLFHyy NRGLFHYT? € RGLFHY NRGLAHY,

! 12 rgm—2
'U/tt 6 RQLTHX 3

where the weights pl,> = % are chosen using the conditions (3.5) and (3.7). Also
assume, for simplicity, that the discretized initial condition is vy, = HhM’"v. Then,

for every t € (0,T], we have the error estimate for the SFEM solution uﬁ[’n(t),

len(®) ez, < Carnh™ ™ (luellrg g + 10y g+ ) (4.5)

+ CQun(RR) (i = ety 1z it + I1F(E) = o)l 1)

X
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where the weights R, 142 = ‘q—u satisfy

all”
\21 1
qu/\i (CZ”W) <3 and Z Z—f <3 (4.6)
k k Tk

Here, the constant C' is independent of h, M,n, and the constant Cyr, can be
taken as

O :C,(M—I—n)

M

where C' is independent of h, M,n. The term

N QW Qn-{-l
QM,n(RaR) - \/(1 _Q)Q + 1_@

where

. N2 . N2
Q= qux\i (C’lezp> T Z—f <1l and Qw = Z Y (Czllzp) + %

k>1 k k> M k

The proof of Theorem 4.1 is deferred to Section 6. We proceed to make some
remarks.

In analogy to the deterministic equation case, the finite element convergence
rate of h™T! for the solution u € RoH*H is optimal. Without invoking the
stochastic adjoint problem, it is easy to obtain a finite element convergence rate
of K™~ for the solution u € RoH-HY, which is two orders worse than optimal.
The gain of two orders is achieved by extracting some crucial information from
the estimates of lower norms, through the application of the stochastic adjoint
problem in the duality technique.

The term Qs (R, R’) in the estimate (4.5) is, as usual, the error from trun-
cating the Wiener chaos expansion up to Ju,». It arises from invoking the error
estimates for the corresponding elliptic problem, and depends on the choice of the
weighted space R in which to bound the error, as well as on the weights R’ of the
forcing term in the sense of the elliptic problem. It also implicitly assumes that
R, R’ are related by the condition (4.6). However, the second inequality in (4.6)
is a somewhat strict condition. If we consider the optimal weights R’ to behave
like pj, ~ l{:*(lﬂ))\,:2 for any € > 0, then the optimal weights R can behave like
qi ~ k_(2+6)>\,;2 for any € > 0. Thus, the error estimate holds in a weighted space
that is generally worse than the optimal space that the solution u belongs to.
Additionally, the validity of the first and third term in the RHS of (4.5) requires
the boundedness of uy in the H)_(1 norm. This marks the departure of the SFEM
from the deterministic FEM.

Since the proof of Theorem 4.1 makes heavy use of the SFEM error estimates
for the corresponding stochastic elliptic problem as well as the stochastic adjoint
problem, we will devote the next section to addressing these two issues.
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5. The Corresponding Stochastic Elliptic Problem
The corresponding stochastic elliptic problem is
AU +6y,(MU)=F inD (5.1)
Ulop =0
where F' € RoHy'. For non-random F, [10] has shown the unique existence of the
weak solution U in some R H}y. For arbitrary random F, an argument identical
to Theorem 3.3 implies that U belongs to RQH&X, provided the weights 72 = %

satisfies
Z 2 qk
chk < 1, and — < 17 (52)
k

where Cj, = CYP),, are the constants defined by ||A71Mkv||HéX < Cullvllma,
for all v € Hl .

We first state a result on the boundedness of the stochastic operator in the LHS
of equation (5.1) that will come in handy subsequently.

Lemma 5.1. Let x € RoHgy, where the weights R satisfy Dok qk)\ﬁ < 0. Then
there exists C depending only on R, A, M such that

[Ax + 5W(MX)||RQH;1 < Clixllrgm, -

Proof. By direct computation,

oo
IAX + 8y (MX) 3, = = D rallAXa + D VarMixa—e, 3
o k=1

2
o0
<> (CZHX|H[§ +Y° \/Oék)\kHXaek,HHg)
« k=1

2
oo
< APy, +232 (z \ﬁakxkumm&)
@ k=1

(%)
where CY is the constant in ||.A¢HH)_(1 < CYll a1, for all ¢ € Hy. To estimate
(x), we apply Jensen’s inequality to obtain

oo
9 ar o
= E E — _
(*) Ta £ |Oé| /—ak k”XQ EkHH&

«
ap #0

<y oy g
= Sl & fa] oy HPee

ap#0

X—E L

g e
= Z Z 1{ak¢0}qkkim Do ||§13
a k ’
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= ZQk)\i Z Ta—skHXa—EkH%[(} = (Z%Ai> HX”%QHéx
k k

o
ap #0

Hence,

JAX + 8 (M), o <2 ((0,%)2 + qui) N
k

]

5.1. The formal stochastic adjoint problem. In this section, we study the
formal stochastic adjoint problem,

A+ M*-Dy,p =¢ on D (5.3)
Ylop =0

where ¢ € Rng;{l. The operators A*, M7 are the formal adjoints of A, My,
respectively. By definition, the term M* - Dy;,% can be formally written as

(M*-Dy), = > Vo + IMjthate,, foraed
k=1

where the infinite sum is interpreted as convergent in an appropriate space.
Definition 5.2. A weak solution of (5.3), with ¢ € R@lH;(l, is a process ¥ €
R Hly such that

(06 A™ Y + M* - Dypb)) g

LRt = 00O R my me g

for all x € RoH .

Since Dy;, and 8, are adjoint to each other,

<<Xa-'4*7/} + M- DW¢>>R9H(}X,R§1H§1 = <<~AX + 5w(./\/lx), ¢>>RQH;{1,R§1H(}X-

Denote by C; the constant in [|U|| g1 < C3||F||g-1 for the solution of A*U = F'.
Denote by A} the constant in [[Myé||g-1 < A[|¢]|g;. For brevity, in this section
only, we may drop the superscripts * and write C'4, Ay without ambiguity.

Proposition 5.3. Suppose there exists {1, @ € J} belonging to H} such that
for all

(1) Xopy Var + IMtase, € Hy'
(i) A*to + > pey Vo + IMitate, = ¢o in the weak sense.

Let the weights R satisfy >, qx(\;C%)% < 3. Then there exists C depending on
R, A*, M*, such that

||7/1H7251H3X < CHﬁf)“Rng;l'

Proof. From the deterministic elliptic estimates,

[Yallmy, <Ca <||¢a”H1 +> Va+ 1|M2wa+skﬁr1>
k
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So
Yoratlalli, <203 raPldallf -

[e3% (e

2
e (zrglmxk||wa+ng)
a k

The second term can be estimated by

2
CA <Z7’_1\/O[k7+)\k‘||wa+€k ”H1 >
2
_ (Z violl Vi +1 Jan 1/2AkoA|wa+5k||H1)

qa/2 q;/2 | |+1 qy

ap +1
< <Z a+sk|‘wa+€k”HO| |+1> (;QkAiCi>

k
and
Bk
S iy = 5 i
k  B:Brk#0
Br _
= ZZ i Wl = 9l
B
Hence,
202 2 2| 412
(1 — Q(Xk:qkAkCA)> ||wH7351HéX S QCAHqs”Rng;l
The estimate follows from the condition (5.4). 0

Theorem 5.4. There exists a weak solution v € Rng&X to the adjoint problem
(5.3), provided
> a(XCh)?
k

Proof. The weak solution is constructed via the usual Galerkin approach. Let
P = Z‘a|<p bale. We will first construct the weak solution 9P of

(5.4)

N |

AP+ M- Dy = ¢P. (5.5)
Let 42 = 0 if |a| > p. For |a| = p, define 92 by the solution of
A" = ¢,

and for |a| < p,

A*WJ = (ba Z ka)wa+5k

The solvability of the equation for |a| = p follows from the usual deterministic
theory, and

[Yellmy < Calldalla-1.
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The solvability of the equation for |a| < p requires that >, oy + IMh

a+teg
belongs to H)}l, which we now verify.

Denote by @g ) the quantity

oo

y li[ (g +otew i +1
e laf +j

Clearly, ) < 0. If la| =p—1, for Il =1,...,p, it is easy to show by induction
on [ that

l
192l < Ca <|¢a||H1 +rot/ (- 1)!22“2@“2@53))

i=1

where § = Y, qxA\7C%, and hence
I
22 Z Vo + IMyh |3 < (1—1)! ZQiqi@g) <.
F i=1

This verifies that >, var + 1Myl € H™', and hence 4P := Y ¢k, is
well-defined.

By construction, ¥ solves equation (5.5). Moreover, by similar calculations as
Proposition 5.3,

(1 - 2(2@)@0%)) HW)HR;H&X < 2CA||¢pHR51H;(1 < 20AH¢||R51H;1
k

and by (5.4), the sequence 9? is uniformly bounded in R, 1H& - Thus, there exists
a weakly converging subsequence, say, with abuse of notation, ¥ — 1 weakly in
Ro ' Hix.
Fix an arbitrary x € RoHgy, and from Lemma 5.1, Ax + &,;,(My) =: F
belongs to RQH)_(l. Then
(A" + M* - Dyt), x)) = (¢, Ax + 8,3, (MXx))) = lim (7, F))

p—00

= lim (A" + M" - Dyy?, x)) = lim ((67,x)) = ({6, x))-

p—oo

O

By definition, the solution in Theorem 5.4 satisfies the hypothesis of Proposition
5.3.

Remark 5.5. Higher spatial regularity results follow as usual from the correspond-
ing deterministic results for each equation in the propagator. In a similar fashion
to the proof of Theorem 5.4, one can obtain higher regularity estimates such as

\W“R;H; < C||¢||R51H;—2

forr>1,if ¢ € R{)lH;{Z, and if the boundary 9D and the coefficients of A, M
are sufficiently smooth.
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5.2. SFEM for the stochastic elliptic problem. An extension of [14] to ran-
dom forcing terms yields the following result for the approximation error of the
SFEM approximation U, }11\4 ™ of equation (5.1).

Theorem 5.6. Suppose U € RoH}y N RQH;(”H, where there weights satisfy
Zk:qui < % and ijzl’: < % (5.6)
Then the error of approximation of the stochastic finite element method is given
by
1T = U " IR,
< O™ Ul s+t + ClFl = Qarn(R.R) (5.7
where Cppp = C’(MA}'"), and the constants C,C’ are independent of h, M, n.

The proof of Theorem 5.6 will be given in Appendix A. We will also need error
estimates in lower norms.

Proposition 5.7. Under the same assumptions as Theorem 5.6, the error of
approximation of the SFEM has the bounds

M,
”U - Uh L||RQH§{—’C
< Ont ™ Ul s + ClFll gy pr2 @atn(R. R) (5.8)
fork=1,2.
Proof. As in the proof of Theorem 5.6,
UﬁU}JLw’p: Z (Ua*ﬁa)gaJF Z Un€o =t €1 + €2,
a€ImMm,p a€I\IM,p
with
lellrgmy, < Cunh™|Ullg, g+,  and
le2llromy, < CllFllggn@ua(R,R)
We leave the estimate for e; untouched. For ey, we consider the two cases.

Case: k=1.Let ¢ € R§1H§< be the solution of Ay + M - Dy, = R?ey, with
||’(/}HRS—21H§( < C|\R261||R51L§( = |le1l[rg 2 - Note that, in fact, ¢ € (SMmy* @ Hy
also. Then,

lenlirq s, = (ler. RPen))rgrg mytg = Hen REe) rg et gt
= <<617Aw + M- DW¢>>RQH;1,R51H)1(
= ((Ae1 + &y (Mer), ¥ — X>>RQH;{1’R51H}1{
for all x € SM" ® S),. So

2 .
||€1||RQL§( < [[Aer + 5W(M€1)HRQH;1 XGS,{%@Sh I — X||R51H§(

To estimate the first term, Lemma 5.1 implies that

[Aer + 8y (Mer) g, mr < Cllerllrgmg,
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To estimate the second term, we make use of the FE estimate (4.1), in particular

. 2 1
Juf [ = xnllm, <Chl|®|gz, VP € Hx N Hx.

This FE estimate is usually obtained by finding a projection operator I, for which
|®— 1@ gz < Ch?||®] s , from which the desired estimate follows immediately.
But here, we will show the estimate by constructing a near-infimizing x. Fix € > 0.
For each o € Js,n, there exists x, € Sp, such that

o = Xallmgy < _i0E [ = Xullimg, + Kale) < Chllvallg, + kale

where we choose ko (€) = €'/2r4Rq, with 3°_ &2 = 3. Set x = Y acTy , Xaba €
SM:m @ S, . Then

2
=iy < D0 ra? (Chlltallig, + rale)) < CRIE -y +e
GEJM,n

and

Xesli‘%fl@)sh Il — X||R51H[}X < ChlleR;ng( < ChHelHRQH(}X

Hence,
H€1||32QL3( < ||el||RQH3XCh||¢”R51H§(
S CM,TLherl”UHRQH;H'l ||61||R§2L§('
Case: k =2. Since e; € SM™ ® Hjy, we compute the norm
||€ || L= Su |<<€15¢>>| _ su |<<€1a¢)>>|
HReHS T cmmimy 19l g R N
PERG Hyx Ro Hox  GE(SMM)"@Hgx Ro Hox
For any ¢ € (SM")*@Hly, let 1 € Rg' HY be the solution of A+ M-Dy1b = 6,
with ||2/JHRS—21H§( < CH¢||R51H(}X‘ Note that, in fact, 1 € (S™")*® H3- also. Then,
((e1,9)) = ((e1, AY + M- Dy b)) = ((Aex + 8y, (Mer), ¥ — X))

for all y € SM™ ® S, and by a similar argument in the previous case, we have
that

[((e1, o)) < [l Aer + 5W(M61)||RQH;1 XES}H@S)L [ X||R51H[}X

< Chletllrgmp 0l =t
< Cunh™ 2| U | Ry prme1 I0llr;ras, -

The result follows. (|

6. Proof of Theorem 4.1
Let H,Il/l’" denote the SFEM approximation operator for the stochastic elliptic
problem (5.1). In particular,
M

M
(AU + 3 8, (MU), 2)) = (AT"U) + 37 8¢, (MR (IT"0)), 2))

k=1 k=1
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for all z € SM" ® S),. The error estimates (5.7) also imply that Hz/[’" is a contin-
uous linear map from RqH(y into itself.
Decompose the error into

en(t) = uy " () = u(t) = (" (&) = 15" u()) + (T "u(t) - u(t))
= 0(t) + m(t).

Analysis for w. For every t € (0,7T], we have that Au(t) + 9, (Mu(t)) = f(t) —
ur(t) € RigHY ™', Hence the elliptic estimates (5.7) and lower norm estimates
(5.8) imply

17D llRgrz = 1T ult) — u(t) |z, L2
< C'M,nhmH”U(t)”RQH;g“ + O f(t) — Ut(t)HRng;(l Qun(R,R)

provided (4.6) holds.
Analysis for 6. From the definitions of the numerical and weak solutions,

M
(0, 2)) + ((AD + > 8¢, (Mrb), 2))

k=1

= <<f? Z>> - <<(H]]—t/[7nu)t>z>> - <<AH]]Y7nu + Zéﬁk(Mk(HhM7nu))>Z>>

k=1

M
= ((f,2)) = (A" "), 2)) = ((Au+ Y e (M), 2)) £ ((u, 2))

—(((@,""u = w)e, 2))

for all z € SM" ® §),. Choosing z = R?,

2dt|| IRarz + D raAlba, o)

a€I M n

M,
<N u = w)illg g o 101l Ro

M
3 S Va2 el 6allg, = (D) + (IT)

a€Jm,n k=1

where we recall that A, are the constants in My[u, v] < Apllullg [lvllm2
For (I1),

M
Z Z VarAiralfa—e, ”H}( 7“ocHeoz”H}(

(I1) =
a€Jm,n k=1
u o\ 1/2 1/2
(x (z\ﬁakxkrawaskn@) A
a€Im,n \k=1 a€IM,n
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2 1/2
1/2
<| X Z TV o e e lBame [CE
aC€Im,n
o\ 1/2
1/2
< 2 2,04 e D O 1l
OtejM ap #0

where we applied Jensen’s inequality in the last inequality. Continuing,

1/2
(I11) < Z > Narioo 00— llEn 100l R 12,
k=1 a€IMm,n
ap #0
< 2 v 2 T/ 2
< Z/\ka ||9||RQH§( = [qAZ]gMHGHRQH§(
k=1
Then
1d

2
S IO+ CFT Oy

M,n 2 1 Y2 1/2 2
< eof[(IT,"u — u)tHRQH;l + Ie + g ) 100z,

where C5°°™ is the coercivity constant in Alu,u] > C ||ul|%,, for all u € Hg,
0

and we have that C¢7¢ = (C5'"”)=1. By the first condition in (4.6), we can find
——1/2
€0 such that — + [q)\Q]<M — CCOeTc So

d o2 M, 2
i 10llRg 13, < 2e0ll(IL "u— W)l o

and
k M
1606 s, < 10O ez, + 260 | N0 = wh(6) I,y
0 X

Due to our assumption on the initial condition, that v, = H;\L/I’nfu, the term 6(0)
vanishes. The estimate for the second term in the last inequality is similar in some
respects to the analysis for 7(t), but since the norm appears inside a time integral,
it suffices to show a bound for a.e. ¢. Since HM " is a continuous linear map from
RaoHiy into itself, 1t follows that (I, "u); = IT)""u,. For a.e. s € (0,T], we
have that Aug(s) + 6, (Mug(s)) = fi(s) — us(s) € RyHY 2. Then

m ek
IO u = w)e($)lmgrgr = T wr = ue(s)ll gy

< cM,nhm“Hut(s)nnﬂHy + Ol fuls) — ()l 1 @ar (R, R)
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for a.e. s, and hence
10(0) 202 < Rk el 12
+ Cllfe = allZy 13 o Qurn(R R

for all t € (0,T).

Putting together the estimates for 6(¢) and 7 (t), we obtain
len ()l cz, < Cral® ™ (lluely g + IO, sz

+ CQUAR R (e = il s o + (8 = wiB)Z, 1)

X

The constant C' depends only on R, A, M and the elliptic estimate constant in
(5.7). O

Remark 6.1. (1) If the discrete initial condition vy, is not H%’"v, the additional
terms arising from approximating the initial error can be subsumed into the two
main terms of the error estimate.

(2) If the boundary is not smooth enough, the use of regularity estimates for the
stochastic adjoint problem in the proof of Proposition 5.7 will no longer hold. Thus,

the application of the lower norm estimate to the term || (H,ﬂ”’"u —u)e(s)l»,, s

no longer valid. But we can nonetheless obtain a FE convergence rate of O(h™~1)
in the first term of (4.5).
Appendix A. Proof of Theorem 5.6

In this section we present the proof of Theorem 5.6, which closely follows the
proof in [14]. We decompose the approximation error into two components

M, ~
V-0 e = 3 Ve Oalpr2 b Y Ul
a€TM,p a€I\IMm,p

For Term I, we follow identical steps in the proof present in the Online Sup-
plementary Material of [14], noting that we are assuming complete knowledge of
the forcing term F', to obtain

M
N A . )\k N
||Ua - Ua”H)l( S CA U}}Ielgh ”Ua - 'UhHH}( + g VvV Ok (coerc HUOé*Ek - Ua*&k HH}(
k=1 A

(A.1)
where Cy = (1+ C%/C°¢) and Cj, := A\ /C°™. Then by induction,
1Ua — Tl iy
<Ca %Ca,ﬁ oinf |[Us — vnllay

where ¢, g are constants depending on «,3. The dependence is given by the
following Lemma.
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Lemma A.1.

o lao — 3! (a) Fa-p
T Va=pr\ \s
where C = (C1,Ca, ...).

We will prove this later. Assuming it is true, and using (4.1), we obtain
2

Ua — Ua”%g(?"i < hQWCIQTEC% Z ca,8||Ugll rrm+17a
BLa

2
A r
< WP CERCH Z T%Ci,g Z T5||Ug||Hm+1

f<a P B<a

—1
. |af
<in et | X ([5) 2ok | 101

BLa
So
Z ”Ua_UaHiI}(Ti
acdm,p
m |a
< B CEECANU gy | 22 Z(w ra-gCas

a€Jm,p Bl

(%)
To estimate (), since (1;;)71(g) < 1 due to Lemma B.2,
Z Z <|04|> .2 ﬂ|04*5|!2 (Oé> G2(a=B)
o — |
a€Jm,p BLa 141 (a=B)'\B

aﬂ|a /6|'
< ) 2@

QEJM » B<a

=Y Y (@ glﬁl'

BEITM,p “>/’

- ¥ @l o gy iaz
56(7M;;

-2 X ey () -5)
P )

() S ()
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where mSM = Z}ng:l q,%C,f = ¢ — qw. This gives the first term in the RHS of
(5.7).

For term I, we use the following estimate for the H norm of U,, which easily
follows by induction.

Lemma A.2.

wip T
HUaHH%{ < le * af! Z ”Foc—BHH;(lCB Bl(a— B
Bl
In the rest of this section, we will write C'4 in place of lelip . We decompose

the sum in Term I5 into
p n—1 [eS) n
)OEEDIDDEED DD DD DD

a€I\IM,p n=0 i:O{ (D) =i } n=p+1 i:O{ o laM= }

(@) | =n—i (@) =n—i

Consider the innermost sum

2
= 8!
Z ||Ua||?{;(r3§ Z Ciq” ZHFafﬁHH;lCB Bl(a— )
la (D)= la(D) =i BLa
(2 |=n—i |o() |=n—i
_ - \ﬁl'
<ci Y ¢ ZTifﬁHFaffJ”?{;l ZTQCM —B)!
la(D)]=; B<a Ba .
a2 |=n—i
B
18]t — B!
AP Y Yoy (l) DA
< = o —
L0 e p Blle =)'

[a(2) |=n—i
i n—i

— C2IFI2 a2 “7 18]l — B!
=Gl 23 3 X @’(3) Gy
k=01=0 gV =k |7V |=i—k
1832) =1 | |=n—i-1

We introduce the notation, for p = (p1, p2,...),

M
[Plm :Zf’kv = Z Pk-
k=1

k=M+1
Then

S Ul

la(D)|=i
|oc(2)|:n—7i

‘ ——k —
< AP D 3 1% O

< CallFllz g 7; ([qé2]<M+H >l<[qc'ﬂ2]>M+[]>M)n_z
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The rest of the proof proceeds identically to the proof in [14], and we obtain the
second term in the RHS of (5.7). O

Proof of Lemma A.1. This is done by induction. Suppose

105 = Ol < Ca D e inf (U —vnllmy
B<y

for all |y] <n—1, dim v < M. Let |&| = n. Then the second term on the RHS of
(A1) is

ZerHUa e Ua- EkHHl

k=1
M
Zer Z Ca—ey,p 0f [|[Ug — vpl
k=1 B<a—eg
M
_1_g| .
—eayovar 3 oA (V) it 0 -l
Pt s, W v €S x
~ |a—1—[3|‘ < > Sa—p -
=Cy (g — Br)C* 7 inf ||Us — vpl[ g2
Og <o¢zek \% Oé— onESn N
a—1-7| Sa—3 -
<oy ST (0 o gt g -l

klﬁ<0¢ \/a 6

M
k
B<a
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Hence,

1o = Uallmy, <Ca inf Vo = vallrry +Z\/ CCMCHUa ev = Uaer iy,

<Ca) cCap Jdnf [Us = vnllmy - O
f<a =

Appendix B. Some Combinatorial Results

We had used a result for the multinomial sum in infinite dimensions.
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Lemma B.1. Suppose § = (p1, pa,...) with px > 0, and let [p] = > k1 Pk- Then
for any n € Ny, B

Proof. We identify o with its characteristic set Ko = (k1,...,k|4|). For fixed n,

P Z H?:l Pk; (n!/al)

i a! e, o! (n!/al)
o Z H_;Lzlpk_j' 1
A a! (n!/al)
1 n
0 S o= 5(Xn)
kn j=1 k

where we have multiplied by 1 and rearranged the sum over non-decreasing indices
into a sum over all unordered indices. The last equality follows from the formula
for the multinomial expansion. O

We had also used the combinatorial fact

Lemma B.2.
18] la =Bt _ |aft
f! (a—6)~ - al

Proof. Let Ko = (k1,...,k|q) be the characteristic set of a. On the RHS,

the number of distinct permutatlons of K,. On the LHS, we partition Ka mto
the two subsets corresponding to Kg and K(,_g). Then, the number of distinct
permutations of Kz times that of K(,_g) cannot exceed the number of distinct
permutations of K. O
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