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Abstract. We consider parabolic SPDEs driven by purely spatial noise,
and show the existence of solutions with random initial data and forcing
terms. We perform error analysis for the semi-discrete stochastic finite el-
ement method applied to a class of equations with self-adjoint differential
operators that are independent of time. The analysis employs the formal
stochastic adjoint problem and the corresponding elliptic error estimates to
obtain the optimal order of convergence (in space).

1. Introduction

In this paper, we discuss stochastic finite element approximations of the follow-
ing parabolic SPDE driven by multiplicative purely spatial noise Ẇ (x),

du

dt
+Au+ (Mu+ g) ¦ Ẇ (x) = f on D × (0, T ] (1.1)

u|∂D = 0

u|t=0 = v

where A,M are second order partial differential operators, and ¦ denotes the Wick
product (see e.g. [4], [5], [6], [7]). The stochastic finite element method (SFEM)
for elliptic equations has been studied in [14], where the error estimates were
derived in an appropriately weighted stochastic space. The approach taken there
was based on Malliavin calculus and the Wiener Chaos expansion (see e.g. [11],
[12]) and that is also the approach we will adopt. In fact, to obtain error estimates
in the parabolic case, we will make integral use of the results from the elliptic error
estimates, both directly from [14] as well as further results which we will derive in
this paper. Thus, our error analysis can be viewed as a stochastic generalization
of the standard techniques from deterministic FEM theory for parabolic equations
[13].

The Malliavin calculus provides a tool to investigate the SFEM in an analogous
way to the deterministic FEM. This approach reexpresses the Wick product in
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the form of Malliavin divergence operator, (Mu + g) ¦ Ẇ (x) = δẆ (x)(Mu + g).
As shown in [10], (1.1) is equivalent to a lower triangular system of deterministic
parabolic PDE, known as the propagator system. Thus, the SFEM discretizes the
randomness by a Galerkin approximation of the propagator system, and thanks
to the lower triangular property, the SFEM reduces to an iterative procedure of
applying the deterministic FEM to each equation in the truncated propagator sys-
tem recursively. As in the elliptic case, our parabolic error estimates are comprised
of two terms. One term represents the error from the stochastic truncation, while
the other term represents the error from the application of the deterministic FEM
to each equation in the truncated propagator system. Our error estimates achieve
optimal spatial order of convergence, by analogy with the deterministic case; that
is, for the spatial variable of the error measured in the L2 norm, the convergence is
O(hm+1) for a solution u with spatial smoothness of Hm+2 and with Hm-smooth
time derivative ut.

Since the spatial regularity of the solution is imperative for the fast convergence
of finite element schemes, it is also necessary to determine when the weak solution
of (1.1) is also smooth. We will see that certain compatibility conditions at time
t = 0, beyond those required in the deterministic case, are necessary for higher
regularity to hold. Existence and uniqueness results for (1.1) have been studied in
[10] under the assumption that v and f are deterministic and g ≡ 0. The SFEM
elliptic error estimates in [14] also considered deterministic forcing term. By the
nature of our error analysis technique, the error estimates for the case of random
input data may be obtained with equal ease as for deterministic input data. Thus,
we immediately consider the error estimates for (1.1) with random input data, and
for this to make sense, we extend the existence and uniqueness result to allow for
v, f, g to be random.

The framework of the Malliavin calculus is briefly described in Section 2. Section
3 deals with the existence of solution of equation (1.1), and gives a discussion
on when the solution will be smoother in the spatial variable. The stochastic
finite element method is detailed in Section 4, in which the statement of the main
theorem on the parabolic error estimate is given. Section 5 discusses two issues
relating to the corresponding stochastic elliptic problem – the formal stochastic
adjoint problem and the extensions of the SFEM error estimates for the stochastic
elliptic problem, both of which are ingredients of the proof of the main theorem
in Section 6.

2. The Malliavin Calculus Framework

In this section, we describe the Malliavin calculus framework that we will use in
the rest of the paper. Let (Ω,F ,P) be a probability space, where F is the σ-algebra
generated by ξ = {ξk}k≥1. Let U be a real separable Hilbert space with complete
orthonormal basis {uk}k≥1. In particular, since we are considering purely spatial
noise, we will take U = L2(D), for a domain D ⊂ Rd, and assume uk are smooth.
The Gaussian white noise on U is Ẇ (x) :=

∑
k≥1 ξkuk(x).

Given a real separable Hilbert space X, let L2(Ω;X) be the Hilbert space of
square-integrable F-measurableX-valued random elements. The Cameron-Martin
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basis is Ξ = {ξα, α ∈ J }, where ξα =
∏

k≥1

Hαk
(ξk)√

αk!
, and Hn is the n-th Hermite

polynomial, and J = {α = (α1, α2, . . . )} is the set of multi-indices.
We now introduce the weighted Wiener Chaos spaces. Let R be a bounded

linear operator on L2(Ω) defined by Rξα = rαξα for every α ∈ J , where the
weights {rα, α ∈ J } are positive numbers. The inverse operator R−1 is defined
by R−1ξα = r−1

α ξα. We define the space RL2(Ω;X) as the closure of L2(Ω) under
the norm

‖f‖2RL2(Ω;X) :=
∑

α∈J
‖fα‖2Xr2α

for f =
∑

α∈J fαξα. In other words, the elements of RL2(Ω;X) is identified
with a formal series

∑
α∈J fαξα, where ‖f‖2RL2(Ω;X) < ∞. Clearly, RL2(Ω;X)

is a Hilbert space with respect to ‖ · ‖RL2(Ω;X). Suppose X ↪→ Y ↪→ X ′ is a
normal triple of Hilbert spaces. We define the space R−1L2(Ω;X) as the dual
of RL2(Ω;X ′) relative to the inner product in the space L2(Ω;Y ). The duality
pairing is given by

〈〈f, g〉〉RL2(Ω;X′),R−1L2(Ω;X) := E[〈Rfα,R−1gα〉X′,X ] =
∑

α∈J
〈fα, gα〉X′,X

for f ∈ RL2(Ω;X ′) and g ∈ R−1L2(Ω;X). Similarly, R−1L2(Ω;X ′) is defined as
the dual of RL2(Ω;X) relative to the inner product in L2(Ω;Y ).

In our paper, we will consider only admissible weights of the form

r2α =
ρα

|α|! ,

where ρ = (ρ1, ρ2, . . . ), and ρα :=
∏

k ρ
αk

k . This class of weights are natural for
the multiplicative noise structure appearing with the second order operator M in
(1.1) [10].

Next, we define the Malliavin derivative Dξk
and Malliavin divergence operator

δξk
as follows

Dξk
(ξα) :=

√
αkξα−εk

, δξk
(ξα) :=

√
αk + 1ξα+εk

.

Here, εk is the multiindex with 1 in the k-th entry and zero elsewhere. The
Malliavin derivative and Malliavin divergence operator can be extended to random
elements in RL2(Ω;X). In particular, for f ∈ RL2(Ω;X⊗U), δẆ (f) is the unique
element of RL2(Ω;X) with the property

〈〈
δẆ (f), ϕ

〉〉
RL2(Ω;X),R−1L2(Ω;X′) =

〈〈
f,DẆϕ

〉〉
RL2(Ω;X⊗U),R−1L2(Ω;X′⊗U)

for every ϕ ∈ R−1L2(Ω;X ′) such that DẆϕ ∈ R−1L2(Ω;X ′ ⊗ U). Thus, the
Malliavin derivative and Malliavin divergence operator are adjoint to each other.
For a given g ∈ RL2(Ω;X), we also write δẆ (g) to mean δẆ

( ∑
α

∑
k

√
αkgα ⊗

ukξα
)
, and write gk,α = uk ⊗ gα.

3. The Stochastic Parabolic Problem.

In this section, we consider the stochastic parabolic problem with zero Dirichlet
boundary conditions, and state the conditions needed for the existence of a weak
solution as well as for a solution with higher spatial regularity.
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Let D ⊂ Rd be a bounded domain, and let A be a second order elliptic operator
from H1

0 (D) into H−1(D), and Mk, k = 1, 2, . . . , be bounded operators from
H1

0 (D) into H−1(D). We will assume that the boundary ∂D and the coefficients
of A,Mk are sufficiently smooth, and also that A,Mk do not depend on time. In
the future, we will encounter the constants CA and λ(r)

k , which arise in

‖w‖L2(0,T ;H1
0 (D)) ≤ CA(‖w0‖L2(D) + ‖f‖L2(0,T ;H−1(D)))

for the weak solution w of the Dirichlet problem dw
dt + Aw = f with w(0) = w0;

and in
‖Mkw‖Hr−2(D) ≤ λ

(r)
k ‖w‖Hr(D), ∀w ∈ Hr(D).

For brevity, we write λk = λ
(1)
k .

The stochastic parabolic problem is

du

dt
+Au+ δẆ (Mu+ g) = f on D × (0, T ] (3.1)

u|∂D = 0

u|t=0 = v

where M = (M1,M2, . . . ), and Mu :=
∑

kMku ⊗ uk. The input data (i.e. the
initial conditions and forcing terms) are allowed to be random.

In the future, we will use shorthand to denote the spaces: for example, we
will write RΩL

2
TH

−1
X to denote RL2(Ω;L2((0, T );H−1(D))). Also, H1

0X denotes
H1

0 (D).

Definition 3.1. A weak solution of (3.1), with f, g ∈ RΩL
2
TH

−1
X and v ∈ RΩL

2
X ,

is a process u ∈ RΩL
2
TH

1
0X such that for every φ ∈ R−1

Ω with DẆφ ∈ R−1
Ω U ,

〈〈u(t), φ〉〉 = 〈〈v, φ〉〉 −
∫ t

0

〈〈Au+ δẆ (Mu+ g), φ〉〉ds+
∫ t

0

〈〈f, φ〉〉ds (3.2)

with equality in L2
TH

1
0X .

The Equivalence Theorem 3.2 relates the weak solution to the propagator sys-
tem (3.3).

Theorem 3.2. The process u =
∑

α uαξα ∈ RΩL
2
TH

1
0X is a solution of (3.1), if

and only if, for each α ∈ J ,

uα(t) = vα −
∫ t

0

Auα(s) +
∑

k≥1

√
αk(Mkuα−εk

+ gk,α−εk
) ds+

∫ t

0

fα(s)ds (3.3)

holds in H−1
X for a.e. t ∈ [0, T ].

Proof. See [10]. ¤

3.1. The existence and uniqueness theorem. The existence and uniqueness
of a weak solution of (3.1) for v, f deterministic and g ≡ 0 has been shown in [10].
We show the existence theorem for when v, f, g may be random, and determine
the conditions for the weighted spaces that u may belong to, in terms of the spaces
that the input data belong to.
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Theorem 3.3. Let the weights R, with r2α = qα

|α|! , satisfy
∑

k≥1

qkC
2
Aλ

2
k < 1. (3.4)

(1) If the data v ∈ L2
X and f, g ∈ L2

TH
−1
X are deterministic, then there exists

a unique weak solution u ∈ RΩL
2
TH

1
0X , and

‖u‖RΩL2
T H1

0X
≤ C

(
‖v‖L2

X
+ ‖f‖L2

T H−1
X

+ ‖g‖L2
T H−1

X

)

where C depends only on R,A,M and T .
(2) Assume v ∈ R̄ΩL

2
X and f, g ∈ R̄ΩL

2
TH

−1
X for some r̄2α = ρα

|α|! . Also
assume, in addition to (3.4), qk are chosen to satisfy

∑

k≥1

qk
ρk

< 1 (3.5)

Then there exists a unique solution u ∈ RΩL
2
TH

1
0X , and

‖u‖RΩL2
T H1

0X
≤ C

(
‖v‖R̄ΩL2

X
+ ‖f‖R̄ΩL2

T H−1
X

+ ‖g‖R̄ΩL2
T H−1

X

)

where C depends only on R, R̄,A,M and T .

Proof. The proof proceeds along the usual steps, (see e.g. [8] (Theorem 9.4) or [9]
(Proposition 4.2)).

Step 1.
Assume v, f, g are non-random. This case has been studied in [10] for g = 0. The
proof here is essentially the same. The propagator system is

u(0)(t) = v +
∫ t

0

Au(0)(s) + f(s)ds

uεk
(t) =

∫ t

0

Auεk
(s) +

(Mku(0)(s) + gk(s)
)
ds

uα(t) =
∫ t

0

Auα(s) +
∑

k

√
αkMkuα−εk

(s)ds, |α| ≥ 2

An explicit formula for the chaos coefficients is (c.f. proof of Theorem 3.11 in
[10])

u(0)(t) = Φtv +
∫ t

0

Φt−sf(s)ds

and for |α| = n,

uα(t) =
1√
α!

∑

σ∈Pn

∫ t

0

∫ sn

0

. . .

∫ s2

0

Φt−snMkσ(n) . . .Φs2−s1

(Mkσ(1)u(0)(s1) + gkσ(1)

)
ds1 . . . dsn

Here, Kα = (k1, . . . , k|α|) is the characteristic set of α, Pn is the group of permu-
tations of {1, . . . , n}, and Φt is the semigroup generated by A.
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By induction, and by application of the deterministic parabolic estimates, we
obtain

‖u(0)‖L2
T H1

0X
≤ CA(‖v‖L2

X
+ ‖f‖L2

T H−1
X

)

‖uα‖L2
T H1

0X
≤ CAM

(
~λCA

)α|α|!√
α!

(‖v‖L2
X

+ ‖f‖L2
T H−1

X
+ ‖g‖L2

T H−1
X

)

where M = supk(1 ∨ µk

λkCA
), and µk is the constant in ‖gk‖H−1

X
≤ µk‖g‖H−1

X
. So

taking the weights to satisfy (3.4), it follows from Lemma B.1 that

‖u‖RΩL2
T H1

0X
≤ C(‖v‖L2

X
+ ‖f‖L2

T H−1
X

+ ‖g‖L2
T H−1

X
)

C depends only on R,A,M and T .
Step 2.

Fix an arbitrary α∗ ∈ J . Assume v = V ξα∗ , f = Fξα∗ , g = Gξα∗ ; in other words,
the randomness of the data is localized to a single mode. Let u[α∗;V, F,G](t, x)
be the solution. By linearity, the chaos expansion coefficients with indices of the
form α∗ + α satisfy

uα∗+α[α∗;V, F,G]√
(α∗ + α)!

=
uα[(0); V√

α∗!
, F√

α∗!
, G√

α∗!
]

√
α!

and are zero otherwise. Then
∫ T

0

‖u[α∗;V, F,G](t)‖2RΩH1
0X
dt

=
∑
α

qα∗+α

|α∗ + α|!
(α∗ + α)!

α!

∥∥∥∥uα

[
(0);

V√
α∗!

,
F√
α∗!

,
G√
α∗!

]∥∥∥∥
2

L2
T H1

0X

=
∑
α

qα∗+α

|α|!|α∗|!
|α|!|α∗|!
|α∗ + α|!

(α∗ + α)!
α!α∗!

‖uα[(0);V, F,G]‖2L2
T H1

0X

≤ qα∗

|α∗|! ‖u[(0);V, F,G]‖2RΩL2
T H1

0X

where the last inequality follows by Lemma B.2.
Step 3.

For the general case with random data, assume v ∈ R̄ΩL
2
X and f, g ∈ R̄ΩL

2
TH

−1
X .

The solution can be written as

u =
∑
α∗

u[α∗; vα∗ , fα∗ , gα∗ ]

Using the estimates from Step 2,

‖u‖RΩL2
T H1

0X
≤

∑
α∗
‖u[α∗; vα∗ , fα∗ , gα∗ ]‖RΩL2

T H1
0X
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≤ C

(∑
α∗

qα∗

|α∗|!
|α∗|!
ρα∗

)1/2

×
(∑

α∗

ρα∗

|α∗|!
(
‖vα∗‖L2

X
+ ‖fα∗‖L2

T H−1
X

+ ‖gα∗‖L2
T H−1

X

)2
)1/2

≤ C
(
‖v‖R̄ΩL2

X
+ ‖f‖R̄ΩL2

T H−1
X

+ ‖g‖R̄ΩL2
T H−1

X

)

where we have applied Cauchy-Schwartz inequality in the second inequality. The
convergence of

(∑
α∗

qα∗

|α∗|!
|α∗|!
ρα∗

)
follows from a sufficient condition such as (3.5).

Clearly, R ⊇ R̄, so u is a weak solution of (3.1) in the sense of Definition
3.1. Uniqueness follows from the uniqueness of each equation in the propagator
system. ¤

Remark 3.4. (1) The validity of the assumption that M := supk(1∨ µk

λk
) <∞ arises

in some common examples. For example, taking Mkφ = uk∆φ and gk = ukg, we
have that µk, λk are both ∼ O(k). If M = ∞, then in the estimate for ‖uα‖L2

T H1
0X

in Step 1, we should replace the factor M~λα by (~λCA ∨ ~µ)α, and use the criterion∑
k qk(λkCA ∨ µk)2 < 1 in place of (3.4).
(2) If the input data is non-random, then it belongs to any weighted space R̄

for any ρ. In this case, condition (3.5) is automatically satisfied, and the condition
for optimal solution weights R reduces to (3.4) alone.

3.2. Higher spatial regularity of solutions. The weak solution of (3.1) is
a generalized process on H1

0X . We can ask the question of when the solution
is actually a generalized process on a better space Hm

X . This result is actually
important for the error analysis of the stochastic finite element method later on,
which requires that u, ut, utt be L2 functions in the spatial variable. This higher
spatial regularity of the solution follows from analogous results in the deterministic
case, but comes at the expense of worsening the weights R.

We first recall a higher regularity result in the deterministic case, in which cer-
tain compatibility conditions are necessary conditions for higher spatial regularity.

Theorem 3.5. (Evans [3], Thm 5 and 6 in §7.1.3). Suppose u ∈ L2
TH

1
0X with

ut ∈ L2
TH

−1
X is the weak solution of





ut +Au = f in D × (0, T ]
u = 0 on ∂D × [0, T ]
u = v on D × {t = 0}

(i) Assume
v ∈ H1

0X , f ∈ L2
TL

2
X .

Then in fact u ∈ L2
TH

2
X ∩ L∞T H1

0X and ut ∈ L2
TL

2
X , and

ess sup
0≤t≤T

‖u(t)‖H1
0X

+ ‖u‖L2
T H2

X
+ ‖ut‖L2

T L2
X
≤ Creg

0

(
‖v‖H1

0X
+ ‖f‖L2

T L2
X

)

where the constant Creg
0 depends only on D,T and A.
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(ii) Fix m ≥ 1. Assume

v ∈ H2m+1
X ,

dkf

dtk
∈ L2

TH
2m−2k
X for k = 0, . . . ,m

and suppose the m-th order compatibility conditions hold:
{

v0 := V0 ∈ H1
0X , V1 := f(0)−AV0 ∈ H1

0X ,

. . . , Vm := dm−1f
dtm−1 −AVm−1 ∈ H1

0X

Then dku
dtk ∈ L2

TH
2m+2−2k
X for k = 0, . . .m+ 1, and

m∑

k=0

∥∥∥∥
dku

dtk

∥∥∥∥
L2

T H2m+2−2k
X

≤ Creg
m

(
‖v‖H2m+1

X
+

m∑

k=0

∥∥∥∥
dkf

dtk

∥∥∥∥
L2

T ;H2m−2k
X

)

where the constant Creg
m depends only on m, D, T and A.

From Theorem 3.5(i), we can obtain the following higher regularity result for
the stochastic equation (3.1), with deterministic input data. The case of random
data can be shown in the same way as Steps 2 and 3 in the proof of Theorem 3.3.

Below, we will encounter the constant θ(r)k , r = 0, 1, . . . , arising in ‖gk‖Hr
X
≤

θ
(r)
k ‖g‖Hr

X
.

Corollary 3.6. Suppose u ∈ RΩL
2
TH

1
0X is the weak solution of the SPDE (3.1).

Also assume that v, f, g are deterministic with

v ∈ H1
0X , and f, g ∈ L2

TL
2
X

Then for the weights R̃ satisfying
∑

k

ρ̃k(λ(2)
k Creg

0 )2 < 1,

the weak solution u ∈ R̃ΩL
2
TH

2
X and

‖u‖R̃ΩL2
T H2

X
≤ C

(
‖v‖H1

0X
+ ‖f‖L2

T L2
X

+ ‖g‖L2
T L2

X

)

Proof. The proof is similar to the proof of Theorem 3.3. The estimates for each
uα are obtained by applying Theorem 3.5(i) to the propagator system. ¤

No special compatibility conditions were necessary for Corollary 3.6, but it is
unable to ensure boundedness of utt. Thus, we next show how to obtain a smoother
solution and the boundedness of utt using the 1st order compatibility conditions.

Corollary 3.7. Suppose u ∈ RΩL
2
TH

1
0X is the weak solution of the SPDE (3.1).

Also assume that v, f, g are deterministic with

v ∈ H3
X , and f, g ∈ L2

TH
2
X , and

df

dt
,
dg

dt
∈ L2

TL
2
X ,

and that the 1st order compatibility conditions hold for {v, f, gk}:{
v ∈ H1

0X , f(0)−Av ∈ H1
0X ,

Mkv + gk(0) ∈ H1
0X ∀k = 1, 2, . . .

(3.6)
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Then for the weights R′ satisfying
∑

k

ρ′k
((
λ

(4)
k ∨ λ(2)

k

)
Creg

1

)2

< 1, (3.7)

the weak solution u ∈ R′ΩL2
TH

4
X , ut ∈ R′ΩL2

TH
2
X and utt ∈ R′ΩL2

TL
2
X and

‖u‖R′ΩL2
T H4

X
+ ‖ut‖R′ΩL2

T H2
X

+ ‖utt‖R′ΩL2
T L2

X

≤ C
(‖v‖H3

X
+ ‖f‖L2

T H2
X

+ ‖g‖L2
T H2

X
+ ‖ft‖L2

T L2
X

+ ‖gt‖L2
T L2

X

)

Proof. For α = (0), the (deterministic) compatibility conditions hold, and from
Theorem 3.5(ii),

‖u(0)‖L2
T H4

X
+ ‖u(0),t‖L2

T H2
X

+ ‖u(0),tt‖L2
T L2

X

≤ Creg
1

(
‖v‖H3

X
+ ‖f‖L2

T H2
X

+ ‖ft‖L2
T L2

X

)
.

For α = εk, since we have assumed the coefficients of Mk to be sufficiently
smooth (e.g., at least W 3,∞

X ), so u(0) ∈ L2
TH

4
X implies that Mku(0) + gk ∈ L2

TH
2
X ,

and u(0),t ∈ L2
TH

2
X implies that (Mku(0) + gk)t ∈ L2

TL
2
X . The compatibility

conditions for (Mku(0) +gk)
∣∣
t=0

= Mkv+gk(0) are also satisfied. Again applying
Theorem 3.5(ii),

‖uεk
‖L2

T H4
X

+ ‖(uεk
)t‖L2

T H2
X

+ ‖(uεk
)tt‖L2

T L2
X

≤ Creg
1

(
λ

(4)
k ‖u(0)‖L2

T H4
X

+ θ
(2)
k ‖g‖L2

T H2
X

+ λ
(2)
k ‖(u(0))t‖L2

T H2
X

+ θ
(0)
k ‖gt‖L2

T L2
X

)

≤ Creg
1 (λ(4)

k ∨ λ(2)
k ) ˜̃M

×
(
‖v‖H3

X
+ ‖f‖L2

T H2
X

+ ‖ft‖L2
T L2

X
+ ‖g‖L2

T H2
X

+ ‖gt‖L2
T L2

X

)

where ˜̃M = supk

{
1 ∨ (λ

(4)
k ∨λ

(2)
k )

(θ
(2)
k ∨θ

(0)
k )Cref

1

}
. (The remark following Theorem 3.3 ap-

plies.)
For |α| ≥ 2, we have Mkuα−εk

∈ L2
TH

2
X and (Mkuα−εk

)t ∈ L2
TL

2
X . The

compatibility conditions hold trivially, since uα−εk

∣∣
t=0

≡ 0 whenever |α| ≥ 2. The
usual computations give the estimates,

‖uα‖L2
T H4

X
+ ‖uα,t‖L2

T H2
X

+ ‖uεk,tt‖L2
T L2

X

≤ Creg
1

˜̃M

(
Creg

1 ( ~λ(4) ∨ ~λ(2))
)α|α|!√

α!

×
(
‖v‖H3

X
+ ‖f‖L2

T H2
X

+ ‖ft‖L2
T L2

X
+ ‖g‖L2

T H2
X

+ ‖gt‖L2
T L2

X

)
.

The weighted norm ‖u‖R′ΩL2
T H4

X
<∞ provided (3.7) holds. ¤

Due to the lower triangular property of the propagator system, the first order
compatibility conditions for the stochastic parabolic equation involve additional
conditions on the input data compared to the deterministic case. If the input
data is smoother than what is assumed in Corollary 3.7, additional compatibility
conditions on the derivatives {Dγv,Dγf,Dγg} are required to further raise the
spatial regularity of u, ut and utt, even if the boundedness of time derivatives
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beyond utt are not needed. If the input data is random, similar arguments as
Steps 2 and 3 in Theorem 3.3 extends Corollary 3.7 to the random input data
case, this time with additional compatibility conditions on the modes {vα, fα, gα}.
These results are summarized in the following theorem.

Theorem 3.8. Suppose u ∈ RΩL
2
TH

1
0X is the weak solution of the SPDE (3.1).

For fixed m ≥ 2, also assume that

v ∈ R̄ΩH
m+1
X , and f, g ∈ R̄ΩL

2
TH

m
X , and

df

dt
,
dg

dt
∈ R̄ΩL

2
TH

m−2
X ,

and that the compatibility conditions (3.6) hold for {Dγvα, D
γfα, D

γgk,α}, for all
α ∈ J , and all indices γ = (γ1, . . . , γd) with |γ| ≤ m− 2.

Then for the weights R′ satisfying
∑

k

ρ′k
((
λ

(4)
k ∨ λ(2)

k

)
Creg

1

)2

< 1 and
∑

k

q′k
ρk

< 1, (3.8)

the weak solution u ∈ R′ΩL2
TH

m+2
X , ut ∈ R′ΩL2

TH
m
X and utt ∈ R′ΩL2

TH
m−2
X and

‖u‖R′ΩL2
T Hm+2

X
+ ‖ut‖R′ΩL2

T Hm
X

+ ‖utt‖R′ΩL2
T Hm−2

X

≤ C
(‖v‖R̄ΩHm+1

X
+ ‖f‖R̄ΩL2

T Hm
X

+ ‖g‖R̄ΩL2
T Hm

X

+ ‖ft‖R̄ΩL2
T Hm−2

X
+ ‖gt‖R̄ΩL2

T Hm−2
X

)
.

This is the basic structure of the smoothness assumption we will make when
performing the error analysis for the SFEM.

4. Stochastic Finite Element Method

The stochastic finite element method adopts the same strategy as the deter-
ministic situation, by casting the weak formulation of the problem into a finite
dimensional setting. We consider only the semi-discrete case in this paper, where
we have kept the time variable continuous and discretized the stochastic and spa-
tial variables only, thus yielding a system of ODE; this discretization is achieved
by Galerkin approximation in randomness and finite element approximation in
space. Subsequently, the fully discrete case can be done by applying a suitable
time stepping algorithm to the system of ODE.

Finite element approximation in space. We recall the usual finite element set
up. Let (Kref ,P,N ) be a reference finite element. Let Th be a family of quasi-
uniform triangulations. For K ∈ Th, let SK

h = {z : z ◦ F−1
K ∈ P(Kref )} where

FK : Kref → K is affine. The finite element space is

Sh = {z ∈ H1
0 (D) : z|K ∈ SK

h ,K ∈ Th}
A property of Sh we assume is that there exists r ≥ 2 such that for h small,

inf
zh∈Sh

{‖v − zh‖L2 + h‖∇(v − zh)‖L2

} ≤ Chs‖v‖Hs , for 1 ≤ s ≤ r (4.1)

whenever v ∈ Hr ∩ H1
0 [13]. We also assume that, in particular, Sh consists of

piecewise polynomials of degree at most r−1, so that the inverse inequality holds,

‖∇zh‖L2 ≤ Ch−1‖zh‖L2 , ∀zh ∈ Sh.
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We denote the FE basis of Sh by {Φl}l=1,...,dim Sh
.

Galerkin approximation in randomness. Letting

JM,n := {γ ∈ J : |γ| ≤ n, dim(γ) ≤M},
we define the truncated Wiener chaos space

SM,n =
{
f =

∑

γ∈JM,n

fγξγ : fγ ∈ R
}
.

SFEM formulation. The stochastic finite element method is

Find uM,n
h ∈ Sh ⊗ SM,n such that

〈〈du
M,n
h

dt
, zh〉〉R∓1

Ω L2
X

+ 〈〈AuM,n
h +

M∑

k=1

δξk
(Mku

M,n
h + gk), zh〉〉R∓1

Ω H∓1
X

= 〈〈f, zh〉〉R∓1
Ω H∓1

X
(4.2)

for all zh ∈ SM,n ⊗ Sh, and for every t ∈ [0, T ].

Denote uM,n
h =

∑
γ∈JM,n

ûγξγ . Solving (3.2) via the SFEM is equivalent to
solving each equation in the truncated propagator system via FEM: for α ∈ JM,n,

(dû(0)

dt
, zh

)
+ A[û(0), zh] = 〈f(0), zh〉, (4.3)

(dûα

dt
, zh

)
+ A[ûα, zh] +

M∑

k=1

√
αk

(
Mk[ûα−εk

, zh] + 〈gk,α−εk
, zh〉

)
= 〈fα, zh〉,

(4.4)

for all zh ∈ Sh, with initial conditions ûα|t=0 = vM,n
h,α . The bilinear forms A,Mk

are are the bilinear forms associated with A,Mk.
The algorithm. Next, we write out the SFEM algorithm explicitly to show the

resulting system of ODE. We define the mass and stiffness matrices identically to
the usual FEM case, and also a noise matrix arising from the stochastic term:

Mmass
l′l = (Φl,Φl′), Mstiff

l′l = A[Φl,Φl′ ], Mnoise
k;l′l = Mk[Φl,Φl′ ].

The lower triangular discrete propagator system is solved iteratively. For the
numerical solution uM,n

h (t) =
∑

γ∈JM,n

∑dim Sh

l=1 ûγ,l(t)Φlξγ , let the solution vector

be ~̂uγ = (ûγ,1, . . . , ûγ,dim Sh
)T . Then, for γ = (0),

Mmass(~̂u(0))t +Mstiff ~̂u(0) = ~f(0)

and for |γ| ≥ 1,

Mmass(~̂uγ)t +Mstiff ~̂uγ +
∑

k

√
γk

(
Mnoise~̂uγ−εk

+ ~gk,γ−εk

)
= ~fγ

where
~fγ = (〈fγ ,Φ1〉, . . . , 〈fγ ,Φdim Sh

〉)T , and

~gk,γ = (〈gk,γ ,Φ1〉, . . . , 〈gk,γ ,Φdim Sh
〉)T .
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Error analysis. The error analysis relies on decomposing the approximation
error into two contributors

uM,n
h (t)− u(t) = (uM,n

h − U) + (U − u) = θ(t) + π(t)

for some carefully chosen U in a subspace of RΩL
2
TH

1
0X . Two possible choices of

U are
(1) U = ū :=

∑
γ∈JM,n

uγξγ , the truncated Wiener chaos expansion of u.
Then θγ is the error from the FEM approximation of the γ-th equation in
(4.3), and π is the error from truncating the Wiener Chaos expansion of
u.

(2) U = ΠM,n
h u, where ΠM,n

h : RL2(Ω;H1
0 ) → SM,n⊗Sh is the SFEM solution

operator for the corresponding stochastic elliptic problem. Then π is the
error from the associated elliptic problem, whereas θ is the error between
the parabolic and elliptic approximations.

We will adopt the second approach for our error analysis.

4.1. Error analysis. For the error analysis, we assume A and M take the form

Au = −
∑

i,j

Di(aij(x)Dju)

Mku =
∑

i,j

Di(σ
ij
k (x)Dju)

where aij , σij
k are measurable and bounded in D̄, and A is uniformly elliptic with

coercivity constant Ccoerc
A . Also, Cellip

A = (Ccoerc
A )−1 is the constant in ‖w‖H1

0X
≤

Cellip
A ‖f‖H−1

X
for the solution of the zero Dirichlet problem Aw = f . We also

assume for simplicity that g ≡ 0.
We now derive the error estimates for the parabolic equation (3.1). The error

eh(t) := uM,n
h (t) − u(t) will be measured in the RΩL

2
X -norm for every t ∈ (0, T ],

and we will determine the conditions on the weights R that admit these error
estimates.

Theorem 4.1. Let m ≥ 2 be an even integer. Assume for the input data

v ∈ R̄ΩH
m+1
X , f ∈ R̄ΩL

2
TH

m
X , ft ∈ R̄ΩL

2
TH

m−2
X ,

with weights r̄2α = ρ̄α

|α|! , and assume that the appropriate compatibility conditions
hold, so that

u ∈ R′ΩL2
TH

1
0X ∩R′ΩL2

TH
m+2
X , ut ∈ R′ΩL2

TH
−1
X ∩R′ΩL2

TH
m
X ,

utt ∈ R′ΩL2
TH

m−2
X ,

where the weights ρ′α
2 = ρ′α

|α|! are chosen using the conditions (3.5) and (3.7). Also

assume, for simplicity, that the discretized initial condition is vh = ΠM,n
h v. Then,

for every t ∈ (0, T ], we have the error estimate for the SFEM solution uM,n
h (t),

‖eh(t)‖RΩL2
X
≤ CM,nh

m+1
(
‖ut‖RΩL2

T Hm
X

+ ‖u(t)‖RΩHm+1
X

)
(4.5)

+ CQM,n(R,R′)
(
‖ft − utt‖R′ΩL2

T H−1
X

+ ‖f(t)− ut(t)‖R′ΩH−1
X

)



STOCHASTIC FEM FOR PARABOLIC SPDE 283

where the weights R, rα2 = qα

|α|! , satisfy

∑

k

qkλ
2
k

(
Cellip

A

)2

<
1
2
, and

∑

k

qk
ρ′k

<
1
2
. (4.6)

Here, the constant C is independent of h,M, n, and the constant CM,n can be
taken as

CM,n = C ′
(
M + n

M

)

where C ′ is independent of h,M, n. The term

QM,n(R,R′) =

√
Q̂W

(1− Q̂)2
+
Q̂n+1

1− Q̂

where

Q̂ =
∑

k≥1

qkλ
2
k

(
Cellip

A

)2

+
qk
ρ′k

< 1 and Q̂W =
∑

k>M

qkλ
2
k

(
Cellip

A

)2

+
qk
ρ′k
.

The proof of Theorem 4.1 is deferred to Section 6. We proceed to make some
remarks.

In analogy to the deterministic equation case, the finite element convergence
rate of hm+1 for the solution u ∈ RΩH

1
TH

m
X is optimal. Without invoking the

stochastic adjoint problem, it is easy to obtain a finite element convergence rate
of hm−1 for the solution u ∈ RΩH

1
TH

m
X , which is two orders worse than optimal.

The gain of two orders is achieved by extracting some crucial information from
the estimates of lower norms, through the application of the stochastic adjoint
problem in the duality technique.

The term QM,n(R,R′) in the estimate (4.5) is, as usual, the error from trun-
cating the Wiener chaos expansion up to JM,n. It arises from invoking the error
estimates for the corresponding elliptic problem, and depends on the choice of the
weighted space R in which to bound the error, as well as on the weights R′ of the
forcing term in the sense of the elliptic problem. It also implicitly assumes that
R,R′ are related by the condition (4.6). However, the second inequality in (4.6)
is a somewhat strict condition. If we consider the optimal weights R′ to behave
like ρ′k ∼ k−(1+ε)λ−2

k for any ε > 0, then the optimal weights R can behave like
qk ∼ k−(2+ε)λ−2

k for any ε > 0. Thus, the error estimate holds in a weighted space
that is generally worse than the optimal space that the solution u belongs to.
Additionally, the validity of the first and third term in the RHS of (4.5) requires
the boundedness of utt in the H−1

X norm. This marks the departure of the SFEM
from the deterministic FEM.

Since the proof of Theorem 4.1 makes heavy use of the SFEM error estimates
for the corresponding stochastic elliptic problem as well as the stochastic adjoint
problem, we will devote the next section to addressing these two issues.
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5. The Corresponding Stochastic Elliptic Problem

The corresponding stochastic elliptic problem is

AU + δẆ (MU) = F in D (5.1)

U |∂D = 0

where F ∈ R̄ΩH
−1
X . For non-random F , [10] has shown the unique existence of the

weak solution U in some RΩH
1
0X . For arbitrary random F , an argument identical

to Theorem 3.3 implies that U belongs to RΩH
1
0X , provided the weights r2α = qα

|α|!
satisfies ∑

k

qkC
2
k < 1, and

∑

k

qk
ρ̄k

< 1, (5.2)

where Ck = Cellip
A λk are the constants defined by ‖A−1Mkv‖H1

0X
≤ Ck‖v‖H1

0X

for all v ∈ H1
0X .

We first state a result on the boundedness of the stochastic operator in the LHS
of equation (5.1) that will come in handy subsequently.

Lemma 5.1. Let χ ∈ RΩH
1
0X , where the weights R satisfy

∑
k qkλ

2
k <∞. Then

there exists C depending only on R,A,M such that

‖Aχ+ δẆ (Mχ)‖RΩH−1
X
≤ C‖χ‖RΩH1

0X
.

Proof. By direct computation,

‖Aχ+ δẆ (Mχ)‖2RΩH−1
X

=
∑
α

r2α‖Aχα +
∞∑

k=1

√
αkMkχα−εk

‖2
H−1

X

≤
∑
α

r2α

(
Cb

A‖χ‖H1
0

+
∞∑

k=1

√
αkλk‖χα−εk

‖H1
0

)2

≤ 2(Cb
A)2‖χ‖2RΩH1

0X
+ 2

∑
α

r2α

( ∞∑

k=1

√
αkλk‖χα−εk

‖H1
0

)2

︸ ︷︷ ︸
(∗)

where Cb
A is the constant in ‖Aφ‖H−1

X
≤ Cb

A‖φ‖H1 , for all φ ∈ H1
0X . To estimate

(∗), we apply Jensen’s inequality to obtain

(∗) =
∑
α

r2α




∞∑
k=1

αk 6=0

αk

|α|
|α|√
αk
λk‖χα−εk

‖H1
0




2

≤
∑
α

qα

|α|!
∞∑

k=1
αk 6=0

αk

|α|
|α|2
αk

λ2
k‖χα−εk

‖2H1
0

=
∑
α

∑

k

1{αk 6=0}qkλ2
k

qα−εk

(|α| − 1)!
‖χα−εk

‖2H1
0
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=
∑

k

qkλ
2
k

∑
α

αk 6=0

rα−εk
‖χα−εk

‖2H1
0

=

(∑

k

qkλ
2
k

)
‖χ‖2RΩH1

0X

Hence,

‖Aχ+ δẆ (Mχ)‖2RΩH−1
X

≤ 2

(
(Cb

A)2 +
∑

k

qkλ
2
k

)
‖χ‖2RΩH1

0X
.

¤

5.1. The formal stochastic adjoint problem. In this section, we study the
formal stochastic adjoint problem,

A∗ψ +M∗ ·DẆψ = φ on D (5.3)

ψ|∂D = 0

where φ ∈ R−1
Ω H−1

X . The operators A∗,M∗
k are the formal adjoints of A,Mk,

respectively. By definition, the term M∗ ·DẆψ can be formally written as

(M∗ ·DẆψ)
α

=
∞∑

k=1

√
αk + 1M∗

kψα+εk
, for α ∈ J

where the infinite sum is interpreted as convergent in an appropriate space.

Definition 5.2. A weak solution of (5.3), with φ ∈ R−1
Ω H−1

X , is a process ψ ∈
R−1

Ω H1
0X such that

〈〈χ,A∗ψ +M∗ ·DẆψ〉〉RΩH1
0X ,R−1

Ω H−1
X

= 〈〈χ, φ〉〉RΩH1
0X ,R−1

Ω H−1
X

for all χ ∈ RΩH
1
0X .

Since DẆ and δẆ are adjoint to each other,

〈〈χ,A∗ψ +M∗ ·DẆψ〉〉RΩH1
0X ,R−1

Ω H−1
X

= 〈〈Aχ+ δẆ (Mχ), ψ〉〉RΩH−1
X ,R−1

Ω H1
0X
.

Denote by C∗A the constant in ‖U‖H1
0
≤ C∗A‖F‖H−1 for the solution ofA∗U = F .

Denote by λ∗k the constant in ‖M∗
kφ‖H−1 ≤ λ∗k‖φ‖H1

0
. For brevity, in this section

only, we may drop the superscripts ∗ and write CA, λk without ambiguity.

Proposition 5.3. Suppose there exists {ψα, α ∈ J } belonging to H1
0 such that

for all α,
(i)

∑∞
k=1

√
αk + 1M∗

kψα+εk
∈ H−1

X ;
(ii) A∗ψα +

∑∞
k=1

√
αk + 1M∗

kψα+εk
= φα in the weak sense.

Let the weights R satisfy
∑

k qk(λ∗kC
∗
A)2 < 1

2 . Then there exists C depending on
R,A∗,M∗, such that

‖ψ‖R−1
Ω H1

0X
≤ C‖φ‖R−1

Ω H−1
X
.

Proof. From the deterministic elliptic estimates,

‖ψα‖H1
0X
≤ CA

(
‖φα‖H−1 +

∑

k

√
αk + 1‖M∗

kψα+εk
‖H−1

)
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So ∑
α

r−2
α ‖ψα‖2H1

0X
≤ 2C2

A

∑
α

r−2
α ‖φα‖2H−1

+ 2
∑
α

C2
A

(∑

k

r−1
α

√
αk + 1λk‖ψα+εk

‖H1
0X

)2

The second term can be estimated by

C2
A

(∑

k

r−1
α

√
αk + 1λk‖ψα+εk

‖H1
0X

)2

=

(∑

k

√
|α|!

qα/2

√
|α|+ 1

q
1/2
k

√
αk + 1
|α|+ 1

q
1/2
k λkCA‖ψα+εk

‖H1
0

)2

≤
(∑

k

r−2
α+εk

‖ψα+εk
‖2H1

0

αk + 1
|α|+ 1

)(∑

k

qkλ
2
kC

2
A

)

and
∑
α

∑

k

r−2
α+εk

‖ψα+εk
‖2H1

0

αk + 1
|α|+ 1

=
∑

k

∑

β:βk 6=0

r−2
β ‖ψβ‖2H1

0

βk

|β|

=
∑

β

∑

k

βk

|β|r
−2
β ‖ψβ‖2H1

0
= ‖ψ‖2R−1

Ω H1
0X

Hence, (
1− 2

(∑

k

qkλ
2
kC

2
A

)
)
‖ψ‖2R−1

Ω H1
0X

≤ 2C2
A‖φ‖2R−1

Ω H−1
X

.

The estimate follows from the condition (5.4). ¤

Theorem 5.4. There exists a weak solution ψ ∈ R−1
Ω H1

0X to the adjoint problem
(5.3), provided ∑

k

qk(λ∗kC
∗
A)2 <

1
2
. (5.4)

Proof. The weak solution is constructed via the usual Galerkin approach. Let
φp :=

∑
|α|≤p φαξα. We will first construct the weak solution ψp of

A∗ψp +M∗ ·DẆψp = φp. (5.5)

Let ψp
α = 0 if |α| > p. For |α| = p, define ψp

α by the solution of

A∗ψp
α = φα,

and for |α| < p,
A∗ψp

α = φα −
∑

k

√
αk + 1M∗

kψ
p
α+εk

.

The solvability of the equation for |α| = p follows from the usual deterministic
theory, and

‖ψp
α‖H1

0
≤ CA‖φα‖H−1 .
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The solvability of the equation for |α| < p requires that
∑

k

√
αk + 1M∗

kψ
p
α+εk

belongs to H−1
X , which we now verify.

Denote by Φ(i)
α the quantity

(Φ(i)
α )2 =

∞∑

k1,...,ki=1

r−2
α+εk1+···+εki

‖φα+εk1+···+εki
‖2H−1

×
i∏

j=1

(α+ εk1 + · · ·+ εkj−1)kj
+ 1

|α|+ j

Clearly, Φ(i)
α < ∞. If |α| = p − l, for l = 1, . . . , p, it is easy to show by induction

on l that

‖ψp
α‖H1

0
≤ CA

(
‖φα‖H−1 + r−1

α

√
(l − 1)!

l∑

i=1

2i/2q̂i/2Φ(i)
α

)

where q̂ =
∑

k qkλ
2
kC

2
A, and hence

r−2
α ‖

∑

k

√
αk + 1M∗

kψ
p
α+εk

‖2H−1 ≤ (l − 1)!
l∑

i=1

2iq̂iΦ(i)
α <∞.

This verifies that
∑

k

√
αk + 1M∗

kψ
p
α+εk

∈ H−1, and hence ψp :=
∑

α ψ
p
αξα is

well-defined.
By construction, ψp solves equation (5.5). Moreover, by similar calculations as

Proposition 5.3,(
1− 2

(∑

k

qkλ
2
kC

2
A

)
)
‖ψp‖R−1

Ω H1
0X
≤ 2CA‖φp‖R−1

Ω H−1
X
≤ 2CA‖φ‖R−1

Ω H−1
X

and by (5.4), the sequence ψp is uniformly bounded inR−1
Ω H1

0X . Thus, there exists
a weakly converging subsequence, say, with abuse of notation, ψp ⇀ ψ weakly in
R−1

Ω H1
0X .

Fix an arbitrary χ ∈ RΩH
1
0X , and from Lemma 5.1, Aχ + δẆ (Mχ) =: F

belongs to RΩH
−1
X . Then

〈〈A∗ψ +M∗ ·DẆψ, χ〉〉 = 〈〈ψ, Aχ+ δẆ (Mχ)〉〉 = lim
p→∞

〈〈ψp, F 〉〉
= lim

p→∞
〈〈A∗ψp +M∗ ·DẆψp, χ〉〉 = lim

p→∞
〈〈φp, χ〉〉 = 〈〈φ, χ〉〉.

¤
By definition, the solution in Theorem 5.4 satisfies the hypothesis of Proposition

5.3.

Remark 5.5. Higher spatial regularity results follow as usual from the correspond-
ing deterministic results for each equation in the propagator. In a similar fashion
to the proof of Theorem 5.4, one can obtain higher regularity estimates such as

‖ψ‖R−1
Ω Hr

X
≤ C‖φ‖R−1

Ω Hr−2
X

for r ≥ 1, if φ ∈ R−1
Ω Hr−2

X , and if the boundary ∂D and the coefficients of A,Mk

are sufficiently smooth.
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5.2. SFEM for the stochastic elliptic problem. An extension of [14] to ran-
dom forcing terms yields the following result for the approximation error of the
SFEM approximation UM,n

h of equation (5.1).

Theorem 5.6. Suppose U ∈ RΩH
1
0X ∩RΩH

m+1
X , where there weights satisfy

∑

k

qkC
2
k <

1
2
, and

∑

k

qk
ρ̄k

<
1
2
, (5.6)

Then the error of approximation of the stochastic finite element method is given
by

‖U − UM,n
h ‖RΩH1

0X

≤ CM,nh
m‖U‖RΩHm+1

X
+ C‖F‖R̄ΩH−1

X
QM,n(R, R̄) (5.7)

where CM,n = C ′
(
M+n

M

)
, and the constants C,C ′ are independent of h,M, n.

The proof of Theorem 5.6 will be given in Appendix A. We will also need error
estimates in lower norms.

Proposition 5.7. Under the same assumptions as Theorem 5.6, the error of
approximation of the SFEM has the bounds

‖U − UM,n
h ‖RΩH1−k

X

≤ CM,nh
m+k‖U‖RΩHm+1

X
+ C‖F‖R̄ΩH−1

X
QM,n(R, R̄) (5.8)

for k = 1, 2.

Proof. As in the proof of Theorem 5.6,

U − UM,p
h =

∑

α∈JM,p

(Uα − Ûα)ξα +
∑

α∈J\JM,p

Uαξα =: e1 + e2,

with

‖e1‖RΩH1
0X
≤ CM,nh

m‖U‖RΩHm+1
X

, and

‖e2‖RΩH1
0X
≤ C‖F‖R̄ΩH−1

X
QM,n(R, R̄)

We leave the estimate for e2 untouched. For e1, we consider the two cases.
Case: k = 1. Let ψ ∈ R−1

Ω H2
X be the solution of Aψ+M·DẆψ = R2e1, with

‖ψ‖R−1
Ω H2

X
≤ C‖R2e1‖R−1

Ω L2
X

= ‖e1‖RΩL2
X

. Note that, in fact, ψ ∈ (SM,n)∗⊗H3
X

also. Then,

‖e1‖2RΩL2
X

= 〈〈e1,R2e1〉〉RΩL2
X ,R−1

Ω L2
X

= 〈〈e1,R2e1〉〉RΩH−1
X ,R−1

Ω H1
X

= 〈〈e1,Aψ +M ·DẆψ〉〉RΩH−1
X ,R−1

Ω H1
X

= 〈〈Ae1 + δẆ (Me1), ψ − χ〉〉RΩH−1
X ,R−1

Ω H1
X

for all χ ∈ SM,n ⊗ Sh. So

‖e1‖2RΩL2
X
≤ ‖Ae1 + δẆ (Me1)‖RΩH−1

X
inf

χ∈SM,n⊗Sh

‖ψ − χ‖R−1
Ω H1

X

To estimate the first term, Lemma 5.1 implies that

‖Ae1 + δẆ (Me1)‖RΩH−1
X
≤ C‖e1‖RΩH1

0X
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To estimate the second term, we make use of the FE estimate (4.1), in particular

inf
χh∈Sh

‖Φ− χh‖H1
0X
≤ Ch‖Φ‖H2

X
, ∀Φ ∈ H2

X ∩H1
0X .

This FE estimate is usually obtained by finding a projection operator Ih for which
‖Φ−IhΦ‖H1

0X
≤ Ch2‖Φ‖H3

X
, from which the desired estimate follows immediately.

But here, we will show the estimate by constructing a near-infimizing χ. Fix ε > 0.
For each α ∈ JM,n, there exists χα ∈ Sh such that

‖ψα − χα‖H1
0X
≤ inf

χh∈Sh

‖ψα − χh‖H1
0X

+ κα(ε) ≤ Ch‖ψα‖H2
X

+ κα(ε)

where we choose κα(ε) = ε1/2rακ̄α, with
∑

α κ̄
2
α = 1

2 . Set χ =
∑

α∈JM,n
χαξα ∈

SM,n ⊗ Sh. Then

‖ψ − χ‖2R−1
Ω H1

0X

≤
∑

α∈JM,n

r−2
α

(
Ch‖ψα‖H2

X
+ κα(ε)

)2

≤ Ch2‖ψ‖2R−1
Ω H2

X

+ ε

and
inf

χ∈SM,n⊗Sh

‖ψ − χ‖R−1
Ω H1

0X
≤ Ch‖ψ‖R−1

Ω H2
X
≤ Ch‖e1‖RΩH1

0X

Hence,

‖e1‖2RΩL2
X
≤ ‖e1‖RΩH1

0X
Ch‖ψ‖R−1

Ω H2
X

≤ CM,nh
m+1‖U‖RΩHm+1

X
‖e1‖RΩL2

X
.

Case: k = 2. Since e1 ∈ SM,n ⊗H1
0X , we compute the norm

‖e1‖RΩH−1
X

= sup
φ∈R−1

Ω H1
0X

|〈〈e1, φ〉〉|
‖φ‖R−1

Ω H1
0X

= sup
φ∈(SM,n)∗⊗H1

0X

|〈〈e1, φ〉〉|
‖φ‖R−1

Ω H1
0X

For any φ ∈ (SM,n)∗⊗H1
0X , let ψ ∈ R−1

Ω H3
X be the solution of Aψ+M·DẆψ = φ,

with ‖ψ‖R−1
Ω H3

X
≤ C‖φ‖R−1

Ω H1
0X

. Note that, in fact, ψ ∈ (SM,n)∗⊗H3
X also. Then,

〈〈e1, φ〉〉 = 〈〈e1,Aψ +M·DẆψ〉〉 = 〈〈Ae1 + δẆ (Me1), ψ − χ〉〉
for all χ ∈ SM,n ⊗ Sh, and by a similar argument in the previous case, we have
that

|〈〈e1, φ〉〉| ≤ ‖Ae1 + δẆ (Me1)‖RΩH−1
X

inf
χ∈SM,n⊗Sh

‖ψ − χ‖R−1
Ω H1

0X

≤ Ch2‖e1‖RΩH1
0X
‖φ‖R−1

Ω H1
0X

≤ CM,nh
m+2‖U‖RΩHm+1‖φ‖R−1

Ω H1
0X
.

The result follows. ¤

6. Proof of Theorem 4.1

Let ΠM,n
h denote the SFEM approximation operator for the stochastic elliptic

problem (5.1). In particular,

〈〈AU +
M∑

k=1

δξk
(MkU), z

〉〉
=

〈〈A(ΠM,n
h U) +

M∑

k=1

δξk
(Mk(ΠM,n

h U)), z
〉〉



290 CHIA YING LEE AND BORIS ROZOVSKII

for all z ∈ SM,n ⊗ Sh. The error estimates (5.7) also imply that ΠM,n
h is a contin-

uous linear map from RΩH
1
0X into itself.

Decompose the error into

eh(t) := uM,n
h (t)− u(t) =

(
uM,n

h (t)−ΠM,n
h u(t)

)
+

(
ΠM,n

h u(t)− u(t)
)

= θ(t) + π(t).

Analysis for π. For every t ∈ (0, T ], we have that Au(t)+ δẆ (Mu(t)) = f(t)−
ut(t) ∈ R′ΩHm−1

X . Hence the elliptic estimates (5.7) and lower norm estimates
(5.8) imply

‖π(t)‖RΩL2
X

= ‖ΠM,n
h u(t)− u(t)‖RΩL2

X

≤ CM,nh
m+1‖u(t)‖RΩHm+1

X
+ C‖f(t)− ut(t)‖R′ΩH−1

X
QM,n(R,R′)

provided (4.6) holds.
Analysis for θ. From the definitions of the numerical and weak solutions,

〈〈θt, z〉〉+
〈〈Aθ +

M∑

k=1

δξk
(Mkθ), z

〉〉

= 〈〈f, z〉〉 − 〈〈
(ΠM,n

h u)t, z
〉〉− 〈〈AΠM,n

h u+
M∑

k=1

δξk
(Mk(ΠM,n

h u)), z
〉〉

= 〈〈f, z〉〉 − 〈〈
(ΠM,n

h u)t, z
〉〉− 〈〈Au+

M∑

k=1

δξk
(Mku), z

〉〉± 〈〈ut, z〉〉

= −〈〈
(ΠM,n

h u− u)t, z
〉〉

for all z ∈ SM,n ⊗ Sh. Choosing z = R2θ,

1
2
d

dt
‖θ‖2RΩL2

X
+

∑

α∈JM,n

r2αA[θα, θα]

≤ ‖(ΠM,n
h u− u)t‖RΩH−1

X
‖θ‖RΩH1

0X

+
∑

α∈JM,n

M∑

k=1

√
αkλkr

2
α‖θα−εk

‖H1
0X
‖θα‖H1

0X
= (I) + (II)

where we recall that λk are the constants in Mk[u, v] ≤ λk‖u‖H1
0X
‖v‖H1

0X
.

For (II),

(II) =
∑

α∈JM,n

M∑

k=1

√
αkλkrα‖θα−εk

‖H1
X
rα‖θα‖H1

X

≤

 ∑

α∈JM,n

(
M∑

k=1

√
αkλkrα‖θα−εk

‖H1
X

)2



1/2 
 ∑

α∈JM,n

r2α‖θα‖2H1
X




1/2
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≤




∑

α∈JM,n




M∑
k=1

αk 6=0

αk

|α|

√
|α|
αk
λkq

1/2
k rα−εk

‖θα−εk
‖H1

X




2


1/2

‖θ‖RΩH1
X

≤




∑

α∈JM,n

M∑
k=1

αk 6=0

αk

|α|




√
|α|
αk
λkq

1/2
k rα−εk

‖θα−εk
‖H1

X




2



1/2

‖θ‖RΩH1
X

where we applied Jensen’s inequality in the last inequality. Continuing,

(II) ≤




M∑

k=1

∑
α∈JM,n

αk 6=0

λ2
kqkr

2
α−εk

‖θα−εk
‖2H1




1/2

‖θ‖RΩH1
X

≤
(

M∑

k=1

λ2
kqk

)1/2

‖θ‖2RΩH1
X

:= [q~λ2]
1/2

≤M‖θ‖2RΩH1
X

Then

1
2
d

dt
‖θ‖2RΩL2

X
+ Ccoerc

A ‖θ‖2RΩH1
0X

≤ ε0‖(ΠM,n
h u− u)t‖2RΩH−1

X

+
(

1
4ε0

+ [q~λ2]
1/2

≤M

)
‖θ‖2RΩH1

0X

where Ccoerc
A is the coercivity constant in A[u, u] ≥ Ccoerc

A ‖u‖2
H1

0
for all u ∈ H1

0 ,

and we have that Ccoerc
A = (Cellip

A )−1. By the first condition in (4.6), we can find

ε0 such that 1
4ε0

+ [q~λ2]
1/2

≤M = Ccoerc
A . So

d

dt
‖θ‖2RΩL2

X
≤ 2ε0‖(ΠM,n

h u− u)t‖2RΩH−1
X

and

‖θ(t)‖2RΩL2
X
≤ ‖θ(0)‖2RΩL2

X
+ 2ε0

∫ t

0

‖(ΠM,n
h u− u)t(s)‖2RΩH−1

X

ds.

Due to our assumption on the initial condition, that vh = ΠM,n
h v, the term θ(0)

vanishes. The estimate for the second term in the last inequality is similar in some
respects to the analysis for π(t), but since the norm appears inside a time integral,
it suffices to show a bound for a.e. t. Since ΠM,n

h is a continuous linear map from
RΩH

1
0X into itself, it follows that (ΠM,n

h u)t = ΠM,n
h ut. For a.e. s ∈ (0, T ], we

have that Aut(s) + δẆ (Mut(s)) = ft(s)− utt(s) ∈ R′ΩHm−2
X . Then

‖(ΠM,n
h u− u)t(s)‖RΩH−1

X
= ‖ΠM,n

h ut − ut(s)‖RΩH−1
X

≤ CM,nh
m+1‖ut(s)‖RΩHm

X
+ C‖ft(s)− utt(s)‖R′ΩH−1

X
QM,n(R,R′)
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for a.e. s, and hence

‖θ(t)‖2RΩL2
X
≤ C2

M,nh
2(m+1)‖ut‖2RΩL2

T Hm
X

+ C‖ft − utt‖2R′ΩL2
T H−1

X

QM,n(R,R′)2

for all t ∈ (0, T ].

Putting together the estimates for θ(t) and π(t), we obtain

‖eh(t)‖2RΩL2
X
≤ C2

M,nh
2(m+1)

(
‖ut‖2RΩL2

T Hm
X

+ ‖u(t)‖2RΩHm+2
X

)

+ CQM,n(R,R′)2
(
‖ft − utt‖2R′ΩL2

T H−1
X

+ ‖f(t)− ut(t)‖2R′ΩH−1
X

)

The constant C depends only on R, A, M and the elliptic estimate constant in
(5.7). ¤

Remark 6.1. (1) If the discrete initial condition vh is not ΠM,n
h v, the additional

terms arising from approximating the initial error can be subsumed into the two
main terms of the error estimate.

(2) If the boundary is not smooth enough, the use of regularity estimates for the
stochastic adjoint problem in the proof of Proposition 5.7 will no longer hold. Thus,
the application of the lower norm estimate to the term ‖(ΠM,n

h u−u)t(s)‖RΩH−1
X

is
no longer valid. But we can nonetheless obtain a FE convergence rate of O(hm−1)
in the first term of (4.5).

Appendix A. Proof of Theorem 5.6

In this section we present the proof of Theorem 5.6, which closely follows the
proof in [14]. We decompose the approximation error into two components

‖U − UM,n
h ‖2RΩH1

0X
=

∑

α∈JM,p

‖Uα − Ûα‖2H1
X
r2α +

∑

α∈J\JM,p

‖Uα‖2H1
X
r2α

=: I1 + I2

For Term I1, we follow identical steps in the proof present in the Online Sup-
plementary Material of [14], noting that we are assuming complete knowledge of
the forcing term F , to obtain

‖Uα − Ûα‖H1
X
≤ ĈA inf

vh∈Sh

‖Uα − vh‖H1
X

+
M∑

k=1

√
αk

λk

Ccoerc
A

‖Uα−εk
− Ûα−εk

‖H1
X

(A.1)

where ĈA = (1 + Cb
A/C

coerc
A ) and Ck := λk/C

coerc
A . Then by induction,

‖Uα − Ûα‖H1
X

≤ ĈA

∑

β≤α

cα,β inf
vh∈Sh

‖Uβ − vh‖H1
X

where cα,β are constants depending on α, β. The dependence is given by the
following Lemma.
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Lemma A.1.

cα,β =
|α− β|!√
(α− β)!

√(
α

β

)
~Cα−β

where ~C = (C1, C2, . . . ).

We will prove this later. Assuming it is true, and using (4.1), we obtain

‖Uα − Ûα‖2H1
X
r2α ≤ h2mC2

FEĈ
2
A


∑

β≤α

cα,β‖Uβ‖Hm+1rα




2

≤ h2mC2
FEĈ

2
A


∑

β≤α

r2α
r2β
c2α,β





∑

β≤α

r2β‖Uβ‖2Hm+1
X




≤ h2mC2
FEĈ

2
A


∑

β≤α

(|α|
|β|

)−1

r2α−βc
2
α,β


 ‖U‖2RΩHm+1

X

So ∑

α∈JM,p

‖Uα − Ûα‖2H1
X
r2α

≤ h2mC2
FEĈ

2
A‖U‖2RΩHm+1

X


 ∑

α∈JM,p

∑

β≤α

(|α|
|β|

)−1

r2α−βc
2
α,β




︸ ︷︷ ︸
(∗)

To estimate (∗), since
(|α|
|β|

)−1(α
β

)
< 1 due to Lemma B.2,

(∗) =
∑

α∈JM,p

∑

β≤α

(|α|
|β|

)−1

r2α−β

|α− β|!2
(α− β)!

(
α

β

)
~C2(α−β)

≤
∑

α∈JM,p

∑

β≤α

(q2 ~C2)α−β |α− β|!
(α− β)!

=
∑

β∈JM,p

∑
α≥β

α∈JM,p

(q2 ~C2)β |β|!
β!

=
∑

β∈JM,p

(q2 ~C2)β |β|!
β!

× (#{α ∈ JM,p : α ≥ β})

=
p∑

n=0

∑
|β|=n

dim β≤M

(q2 ~C2)β n!
β!
×

((
M + p

M

)
− 2n

β!

)

≤
(
M + p

M

) p∑
n=0

[q]
n

≤M ≤
(
M + p

M

)
1

1− q̂



294 CHIA YING LEE AND BORIS ROZOVSKII

where [q]≤M :=
∑M

k=1 q
2
kC

2
k = q̂ − q̂W . This gives the first term in the RHS of

(5.7).
For term I2, we use the following estimate for the H1

X norm of Uα, which easily
follows by induction.

Lemma A.2.

‖Uα‖H1
X
≤ Cellip

A

√
|α|!

∑

β≤α

‖Fα−β‖H−1
X

~Cβ

√
|β|!

β!(α− β)!
.

In the rest of this section, we will write CA in place of Cellip
A . We decompose

the sum in Term I2 into

∑

α∈J\JM,p

=
p∑

n=0

n−1∑

i=0

∑


α:
|α(1)|=i

|α(2)|=n−i

ff
+

∞∑
n=p+1

n∑

i=0

∑


α:
|α(1)|=i

|α(2)|=n−i

ff
.

Consider the innermost sum

∑

|α(1)|=i

|α(2)|=n−i

‖Uα‖2H1
X
r2α ≤

∑

|α(1)|=i

|α(2)|=n−i

C2
Aq

α


∑

β≤α

‖Fα−β‖H−1
X

~Cβ

√
|β|!

β!(α− β)!




2

≤ C2
A

∑

|α(1)|=i

|α(2)|=n−i

qα


∑

β≤α

r̄2α−β‖Fα−β‖2H−1
X





∑

β≤α

r̄−2
α−β

~C2β |β|!
β!(α− β)!




≤ C2
A‖F‖2R̄ΩH−1

X

∑

|α(1)|=i

|α(2)|=n−i

∑

β≤α

(q ~C2)β

(
q

ρ̄

)α−β |β|!|α− β|!
β!(α− β)!

= C2
A‖F‖2R̄ΩH−1

X

i∑

k=0

n−i∑

l=0

∑

|β(1)|=k

|β(2)|=l

∑

|γ(1)|=i−k

|γ(2)|=n−i−l

(q ~C2)β

(
q

ρ̄

)α−β |β|!|α− β|!
β!(α− β)!

We introduce the notation, for ρ = (ρ1, ρ2, . . . ),

[ρ]≤M =
M∑

k=1

ρk, [ρ]>M =
∞∑

k=M+1

ρk.

Then∑

|α(1)|=i

|α(2)|=n−i

‖Uα‖2H1
X
r2α

≤ C2
A‖F‖2R̄ΩH−1

X

i∑

k=0

n−i∑

l=0

[q ~C2]
k

≤M [q ~C2]
l

>M

(
k + l

k

)[ q
ρ̄

]i−k

≤M

[ q
ρ̄

]n−i−l

>M

(
n− k − l

i− k

)

≤ C2
A‖F‖2R̄ΩH−1

X

(
n

i

)(
[q ~C2]≤M +

[ q
ρ̄

]
≤M

)i (
[q ~C2]>M +

[ q
ρ̄

]
>M

)n−i
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The rest of the proof proceeds identically to the proof in [14], and we obtain the
second term in the RHS of (5.7). ¤

Proof of Lemma A.1. This is done by induction. Suppose

‖Uγ − Ûγ‖H1
X
≤ ĈA

∑

β≤γ

cγ,β inf
vh∈Sh

‖Uβ − vh‖H1
X

for all |γ| ≤ n− 1, dim γ ≤M . Let |α| = n. Then the second term on the RHS of
(A.1) is

M∑

k=1

√
αkCk‖Uα−εk

− Ûα−εk
‖H1

X

= ĈA

M∑

k=1

√
αkCk

∑

β≤α−εk

cα−εk,β inf
vh∈Sh

‖Uβ − vh‖H1
X

= ĈA

M∑

k=1

√
αk

∑

β≤α−εk

|α− 1− β|!√
(α− εk − β)!

√(
α− εk

β

)
~Cα−β inf

vh∈Sh

‖Uβ − vh‖H1
X

= ĈA

M∑
k=1

αk 6=0

∑

β≤α−εk

|α− 1− β|!√
(α− β)!

√(
α

β

)
(αk − βk)~Cα−β inf

vh∈Sh

‖Uβ − vh‖H1
X

≤ ĈA

M∑
k=1

αk 6=0

∑

β<α

|α− 1− β|!√
(α− β)!

√(
α

β

)
(αk − βk) ~Cα−β inf

vh∈Sh

‖Uβ − vh‖H1
X

= ĈA

∑

β<α

M∑
k=1

αk 6=0

(αk − βk)
|α− 1− β|!√

(α− β)!

√(
α

β

)
~Cα−β inf

vh∈Sh

‖Uβ − vh‖H1
X

= ĈA

∑

β<α

|α− β|!√
(α− β)!

√(
α

β

)
~Cα−β inf

vh∈Sh

‖Uβ − vh‖H1
X

= ĈA

∑

β<α

cα,β inf
vh∈Sh

‖Uβ − vh‖H1
X

Hence,

‖Uα − Ûα‖H1
X
≤ ĈA inf

vh∈Sh

‖Uα − vh‖H1
X

+
M∑

k=1

√
αk

λk

Ccoerc
A

‖Uα−εk
− Ûα−εk

‖H1
X

≤ ĈA

∑

β≤α

cα,β inf
vh∈Sh

‖Uβ − vh‖H1
X
. ¤

Appendix B. Some Combinatorial Results

We had used a result for the multinomial sum in infinite dimensions.
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Lemma B.1. Suppose ~ρ = (ρ1, ρ2, . . . ) with ρk > 0, and let [ρ] =
∑

k≥1 ρk. Then
for any n ∈ N0,

∑

|α|=n

ρα

α!
=

[ρ]
n

n!
.

Proof. We identify α with its characteristic set Kα = (k1, . . . , k|α|). For fixed n,

∑

|α|=n

ρα

α!
=

∑

k1≤···≤kn

∏n
j=1 ρkj

α!
· (n!/α!)
(n!/α!)

=
∑

k1,...,kn

∏n
j=1 ρkj

α!
· 1
(n!/α!)

=
1
n!

∑

k1,...,kn

n∏

j=1

ρkj
=

1
n!

( ∑

k

ρk

)n

where we have multiplied by 1 and rearranged the sum over non-decreasing indices
into a sum over all unordered indices. The last equality follows from the formula
for the multinomial expansion. ¤

We had also used the combinatorial fact

Lemma B.2.
|β|!
β!

|α− β|!
(α− β)!

≤ |α|!
α!

Proof. Let Kα = (k1, . . . , k|α|) be the characteristic set of α. On the RHS, |α|!α! is
the number of distinct permutations of Kα. On the LHS, we partition Kα into
the two subsets corresponding to Kβ and K(α−β). Then, the number of distinct
permutations of Kβ times that of K(α−β) cannot exceed the number of distinct
permutations of Kα. ¤
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