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Abstract
Post-market vigilance of drug safety has been legally mandated for pharmaceutical companies and regu-

latory agencies. However, new developments in the quantitative methodologies of what has been called the
science of safety have been scarce in the past few decades. The main source of post-market data for potential
drug induced adverse events (AE) are spontaneous reporting systems (SRS) such as the Adverse Event Re-
porting System (AERS) managed by the Food and Drug Administration (FDA). The goal of analysis of these
reporting systems is detection of new and unexpected drug-AE relationships that may be of potential harm to
the public; in the literature this is referred to as signal detection. In this paper we review existing quantitative
methods for signal detection in SRS that are in widespread use, the so-called disproportionality analysis (DA)
methods. We identify known drug-AE relationships using historical data on FDA labelling changes and use
AERS data on these pairs as case studies. We analyze these case studies using the existing methods, employing
novel approaches of signal detection over demographic strata and over time. Using our case studies, we find
that these analytic approaches are potentially valuable. Furthermore, we generate simulated SRS data for
the purpose of testing the sensitivity of the existing DA methods. From this exercise we conclude that more
simulation should be done and we strongly advocate the development of a reference database on which to test
these DA methods. We conclude that DA in the context of signal detection in SRS are an important tool for
pharmacovigilance and we conclude that the development of more sophisticated statistical methods to deal
with the unique and complex problems presented by analysis of SRS are valuable.

1 Introduction and Motivation

Pharmacovigilance concerns the monitoring and detection of adverse events associated with the use of medicines.
This process starts with designed clinical trials, and continues throughout the drug’s life cycle after approval,
when its use is widespread among the population.

In the post-approval environment, the primary method of data collection for surveillance purposes comes
from spontaneous reporting systems (SRS), such as the Adverse Event Reporting System (AERS) of the Food
and Drug Administration (FDA). These tools produce databases which contain a collection of reports of side
effects, all of which are submitted voluntarily by clinicians, patients, or product manufacturers. Each report
in an SRS database typically includes limited demographic information (such as age, sex, and weight), one or
more drugs, and one or more adverse events.

The objective of creating these systems was to provide data that allows for the investigation of possible
safety problems associated with the use of drugs, since some of these would be impossible to detect during the
limited run of a clinical trial. In addition, clinical trials are unlikely to reliably detect rare, serious adverse
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events that occur in subpopulations who have not participated in studies. Furthermore, as new medical prod-
ucts enter the market, the potential for interactions with other drugs, biologics, medical devices, and foods
increases. Detecting possible relationships between drugs and adverse events in a timely fashion could prove
extremely important to public health. Signal detection can be the first indication that a certain association
should be studied more closely. It could also be informative for pharmaceutical companies as a continued
testing scheme, to avoid potential lawsuits and to comply with the FDA regulations regarding surveillance.

In 2007, active post-market drug safety surveillance and analysis was mandated by a law passed in Congress,
the Food and Drug Administration Amendments Act. In response, the FDA put in place the Sentinel Initiative
with the ultimate goal of creating and implementing a national, integrated, electronic system for monitoring
medical product safety. The Sentinel Initiative represents the implementation of what the FDA calls the
science of safety which combines medical and pharmacological data with quantitative methods, with the goal
to “generate hypotheses about, and confirm the existence and causal factors of, safety problems in the popu-
lations using the products”[2].

Hence the appeal for the development of analytic methods that might help identify possible starting points
of interest. In particular, the drug safety literature often uses the term signal to refer to early hints that point
at the possibility of novel and unintended drug effects. The approach of this investigation has to do with
signal detection in SRS databases.

However, as can be imagined, there are a number of limitations inherent to the type of databases obtained
from SRS. These issues should be noted and kept in mind when formulating conclusions or making decisions
based on the information provided by the data. We just briefly mention some of them in this document.

First of all, these datasets are incredibly large and disorganized. To give an idea of their magnitude, the
FDA receives more than 400,000 of these spontaneous reports each year [1]. The lack of a standardized nomen-
clature for drug names (including different names for the same drugs, misspellings, or the inclusion of dosages
with the name, among others) and the use of multiple terms for similar clinical conditions presents a challenge.

Several problems appear due to the voluntary nature of the reporting process. One is the serious problem
of over-reporting, which could occur for example because of the influence of publicity or a warning set up on a
certain drug. In addition, there could be under-reporting, which may depend on the event and its severity, for
example, or the lack of knowledge of the reporting system. Finally there could be multiple submissions: for
example, when a person is taking a combination of drugs the report might sent to all of the manufacturers,
who in turn file separate reports to the FDA. Additional problems present themselves because many reports
of events do not necessarily reflect associations to the drugs that they allude to, and because there is limited
information regarding the order of exposure and condition, or even the duration of exposure. Most impor-
tantly, SRS databases don’t contain information about the number of patients at risk, that is, the population
that was exposed to a specific drug. In short, there is considerable bias and noise in the data that undermines
its reliability.

It is extremely important to note that any conclusions obtained from these databases cannot establish
causality. At best, the analyses might identify potential issues and associations that must be confirmed by ex-
pert epidemiologists and clinicians in follow-up studies. Actually, many signals that emerge from spontaneous
report databases are mostly noise, because there are many factors that are intermingled in a report such as
treatment indications, co-prescribed drugs, reporting artifacts, etc., or because the reported adverse events
are already labeled, are medically trivial, or biologically implausible.

Despite the many limitations of the available datasets necessary for post-approval analyses, there is an in-
terest in the pharmacology community to develop analytic methods to quantify and detect signals that might
appear in the spontaneous report databases, since these are the only sources of information currently available
about drugs once they are widespread in the market. As previously mentioned, there are thousands of drugs
and thousands of adverse events (AEs) that need to be studied. The complexity of these large datasets makes
drawing inferences about the extremeness of drug-event counts intractable without the help of quantitative
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summaries and analysis. This difficulty, in addition to the terms of the recently approved Sentinel Initiative,
has generated more interest in these methods on the part of the regulators, the health care community, and
industry.

There are multiple methods of signal detection presently in use, and one of the objectives of this project is
to understand the current approaches and to explore and identify potential modifications or areas of improve-
ment for these methods. Additional objectives include analyzing a dataset for a particular drug-adverse event
that has not been investigated before, and exemplifying the importance of stratification based on demographic
covariates.

This document is organized as follows. In section 2 we describe the AERS database and the particular
subsets that we used for analysis. In section 3 we outline the four most commonly used signal detection meth-
ods, and highlight some of their advantages and limitations. In section 4, we propose three novel sequential
methods to detect possible signals from a time series of disproportionality scores. Section 5 introduces three
case studies constituted by specific pairs of drug and adverse event, which will serve as examples for our new
methodologies. In section 6 we present our results. We first applied the four well-known signal detection
methods to a particular case study and exemplified the importance of stratification to control for demograph-
ics. Secondly, we show the results of applying our new longitudinal signal detection methods to 3 case studies.
The last part in this section concerns a simulation study. Finally, we wrap up with our conclusions and future
work. All the analyses performed in this paper were done using available SAS software.

2 Description of the AERS Database

The data that we have used throughout this research is a subset of the Adverse Event Reporting System
(AERS) database, which contains information of medical adverse events reported to the FDA. This database
is publicly available, and it is updated every 3 months, which means that the reports are grouped in quarters
per year. Data is available at the FDA website8 for the first quarter of 2004 through the first quarter of 2012,
and we focused on this specific subset of data corresponding to 33 quarters.

For each quarter, the AERS database consists of six major segments, including separate files for demo-
graphic, drug, reaction, patient outcomes, report sources, and therapy dates information. These datasets are
connected by a primary link key with a unique number that identifies the AERS reports, as can be seen in
Figure 1.

The demographic dataset contains 231,945 unique reports. Most of them are from United States (162,336),
Japan (11,199), Germany (7,313), France (7,022), United Kingdom (6,872), and Canada (6,015). Among these
reports, there are 169, 272 initial reports and 62, 673 follow up reports. The number of reports by females
exceeds the one for males by over 50,000 reports, and there are also unknown and unspecified genders reported.
Most of these reports were issued by consumers, followed by lawyers, and then medical doctors. 33,579 unique
drugs and 9,516 adverse events are included in the reports. In the outcome dataset, 161,252 unique reports
were filed. As a final outcome, 68,951 of cases were hospitalized, 29,138 cases of death, and 8,044 cases re-
ported as life-threading.

One part of our analysis was conducted only on the data pertaining to the first quarter of 2012, and will
appear in Section 6.1. The longitudinal part of the analysis will consider the information in all 33 datasets,
and is detailed in Section 6.2.

For the purpose of visualization, we constructed a drug-adverse event network for 1,000 combinations of
drugs and adverse events from the first quarter of 2012 of the AERS database (Figure 2). The network was
drawn with the open source software Cytoscape9. The nodes represent both drugs and adverse events, while

8http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm082193.htm
9http://www.cytoscape.org
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Figure 1: AERS database description.

the edges denote the relationships between them.

3 Existing methods for signal detection

The objective of signal detection methods is to filter the dataset to try to obtain evidence of potential asso-
ciations between drugs and adverse events that were not known before, by providing a measure of how rare
or common a particular combination is. Disproportionality analysis methods comprise the most widely used
class of analytic methods for signal detection in SRSs. These methods quantify the extent to which a given
condition is “disproportionally” reported with a given drug , compared to what would be expected (a control).
In other words, an observed/expected ratio of probabilities or cell counts is obtained.

Considering the limitations of the databases mentioned above, it is clear that there is no real “control
group”. That is, since all the reports come in a voluntary basis, it is impossible to know how many people
were exposed to the drug, how many people actually experienced an event, or even how many people experi-
enced a particular event after taking a specific drug. This gives rise to a big complication in the quantification
of the rarity of an adverse event, since without the total exposures it is difficult to evaluate the importance of
its occurrence. To put this in terms of the mentioned disproportionality methods, the expected counts cannot
be computed directly for any drug-adverse event pair.

The existing methods try to compensate for the fact that it is impossible to quantify a drug-adverse event
rate directly, by using all other drugs and all other events in the dataset as a control (or background noise)
against which to compare. Therefore, they focus on low-dimensional projections of the data, particularly
2-dimensional contingency tables, of the form shown in Table 1. The difference between the methods is the
way in which the expected counts are modeled.

The most commonly used methods are the proportional reporting ratios (PRR), reporting odds ratios
(ROR), the multi-item gamma Poisson shrinker (MGPS), and the Bayesian Confidence Propagation Neural
Network (BCPNN). PRRs and related measures based on 2x2 contingency tables are currently used in routine
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Figure 2: Network representation of drug and adverse event relationships in AERS database

pharmacovigilance activities by the Medicine Control Agency (MCA) in the UK. MGPS is currently used by
the FDA, and BCPNN is employed by the World Health Organization (WHO)[7]. We give a brief description
of these methods in the following sections.
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AEj = Yes AEj = No
Drugi = Yes n00 n01

Drugj = No n10 n11

Table 1: Typical table for disproportionality analysis. AE stands for adverse event.

3.1 Proportional Reporting Ratio (PRR) and Reporting Odds Ratio (ROR)

The PRR is a very simple method inspired by the well-known relative risk calculation for contingency tables.
By just focusing on a specific drug-adverse event combination, and pooling the counts over all other drugs and
all other adverse events, it is possible to construct a 2x2 table as the one shown in Table 1. Then the PRR is
computed as

PRR =
n00/n0·

n10/n1·

where n0· = n00 + n01, and analogously for n1·.

The ROR is very similar to the PRR, except for the fact that it tries to correct for certain kinds of
under-reporting. It is calculated from the same 2x2 table (Table 1) as the PRR.

ROR =
n00n11

n01n10

The interpretation of these quantities is that they measure how much more frequently the specific event is
reported with the chosen drug, than with all other drugs.

It is important to keep in mind that whenever the count n00 is very small (which often happens in this
type of datasets), this leads to substantial variability which increases the uncertainty about the true value of
the measure of association to be computed. A known problem with PRR and ROR is that they do not address
this issue, that is, there is no way to quantify the variability associated to this “sampling” variation. The
two Bayesian methods that we will proceed to describe improve upon the methods based on relative ratios by
addressing this issue, and provide solutions by considering all the reported drug-adverse event combinations
at the time.

3.2 Bayesian approaches

The multi-item gamma Poisson shrinker (MGPS) and the Bayesian Confidence Propagation Neural Network
(BCPNN) are Bayesian methods that aim to express possible associations between the reporting of events and
drugs in terms of a function of the ratio of observed to expected frequencies mentioning drug i and adverse
event j, nij/Eij . That is, they look at a specific drug-event combination and try to quantify how “interestingly
large” the number of reports is compared to what would be expected under the assumption of drug and event
being statistically independent [7]. The expected counts Eij are computed as

Eij =
ni·n·j
n··

where

ni· =
J∑
j=1

nij , n·j =
I∑
i=1

nij , n·· =
I∑
i=1

J∑
j=1

nij

are the total counts corresponding to drug i, the total counts corresponding to adverse event j, and the total
number of reports, respectively. Throughout this document we denote the total number of drugs in a partic-
ular database by I, and the total number of adverse events by J .
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In particular, the measure of disproportionality for a specific drug-adverse event combination is the infor-
mation criterion (IC), computed as

ICij = log2

(
nij
Eij

)
which is just the logarithm base 2 of the PRR.

3.2.1 Multi-item Gamma Poisson Shrinker (MGPS) - EBGM

In this method [5], each observed count for drug-adverse event pair is modeled as a draw from a Poisson
distribution with varying unknown means. The means are considered to be random with a common prior
distribution: a mixture of two gamma distributions (which have in total 5 parameters). In addition, an
Empirical Bayes procedure is used to estimate the 5 parameters from the prior. In short, the model is

nij ∼ Poisson(µij)
µij = λijEij

λij ∼ Mixture Gamma

Finally, the posterior distribution of λij is obtained, and the EBGM, defined as the geometric mean of the
empirical Bayes posterior distribution of the true relative report ratio, is reported. This method is known as
the Gamma Poisson Shrinker (GPS). As previously mentioned, the Bayesian methods try to account for the
“sampling” variability in the reported counts, and studies have shown that the EBGM method does well even
with very small n00 (even 1 or 2).

A variant of the above method, the Multi-Item Gamma Poisson Shrinker (MGPS), allows for higher order
combinations of drugs and events that are significantly more frequent than their pairwise association would
suggest.

3.2.2 BCPNN

The BCPNN method [4] is similar to EBGM, but uses a multinomial model instead of a Poisson for the counts,
and calculates all cell counts for all potential drug-adverse event combinations in the database (not just those
that appear together in at least one report). The fact that it is embedded in a neural network gives it the
ability of to handle large data sets, and is robust to missing data.

In this case there is actually a proper prior (not estimated from the data as in the empirical Bayes ap-
proach), which is taken from the family of Beta distributions. Again a Bayesian procedure is used to obtain
the posterior distribution of the IC between specific drugs and events present on the same report, as well as
the 95% confidence intervals. In particular, an IC with a lower 95% confidence interval bound that increases
with sequential time scans establishes a criterion for signal detection.

3.3 Discussion of the methods

Although these methods have widespread use as we have previously mentioned, we wish to highlight a few
issues that became apparent when studying them in detail. We hope this will help practitioners to stay aware
of the advantages and limitations of the existing methods, and to take them into account for interpretation of
the results or development of new techniques.

The PPR and ROR are methods that are easily interpretable by practitioners because of the analogies
that can be drawn to relative risks in epidemiology, and they simplify the problem to 2×2 contingency tables.
If we consider that the dataset comprises I different drugs and J different adverse events in total, one would
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essentially need to construct at total I × J tables of size 2 × 2 in order to analyze all the possible pairwise
drug-adverse event combinations with these methods. But in this case, we run into a multiple testing scenario:
we are running I×J tests on the same database without adjusting the family-wise error rate to account for the
multiple comparisons, which will result in a large number of spurious relationships (or false-positive signals)
that appear just by chance. That is, with millions of ratios being calculated, large ratios will inevitably appear
just by chance, without necessarily meaning that there might be some interesting association. It is difficult
to think how to incorporate an adjustment into the analysis, because the well-known methods such as the
Bonferroni correction will potentially be too conservative, since the number of comparisons is huge (I and
J are very large, and for example in our Case Study 1, we had an average of 2.7 million drug-adverse event
combinations to look into).

Another issue that affects PPR and ROR is a small n00 count in the 2× 2 table, as previously discussed.
Analogously, a large count of a particular kind of adverse event report can potentially inflate the denominator
for a specific drug, and reduce the sensitivity in detecting other signals associated with that drug. Finally, in
comparing the frequentist methods (PRR and ROR) to the Bayesian methods, the first don’t take into ac-
count the variability associated to the estimation of the measures of disproportionality, whereas the Bayesian
methods do, by computing the entire posterior distribution.

In terms of the BCPNN, it seems to us that there is no available way to adjust for any stratification vari-
ables. As we will exemplify in our Section 6.1, stratification is important in order to control for demographic
characteristics of the subjects, that is, in order to avoid spurious associations due to bad specification of the
population that takes the drug.

The MPGS method seems to be very flexible in terms of its ability to potentially include drug-drug inter-
actions (by creating a “new” drug which combines the counts for the two drugs included in the interaction),
or even higher level interactions. The limitations of this ability would come in terms of the computational
challenge of increasing the number of parameters to be estimated.

As we mentioned previously, in the MPGS-EBGM method, the estimate is a summary of the empirical
Bayes posterior distribution of the true relative report ratio. Shrinkage towards the mean is a nice property
derived from the fact that we are using an empirical Bayes approach to estimate the parameters of the prior
distribution. What this method does is that it shrinks the calculated ratios in cases where the uncertainty is
large (that is, when the variance in the estimate of the ratio is large), as would happen in the case of a really
small n00 count. When this count is in the range of say, 10 to 20, there would be only a slight shrinkage;
for large counts (e.g. over 100) there would be no shrinkage. This helps mitigate the peaks that would be
obtained using a method like PRR, and therefore these estimates more stable in compareison.

All the methods suffer from the fact that all the calculations that are done are very dependent on what
drugs and adverse events are included in the database. This is, we believe, partially inherent to the problem
at hand since the whole issue is that there is no control group to compare the specific drug-event pair to,
and so the “other drugs” and “other adverse events” that are used in the relative calculations will have a
deep impact on the results. For example, if there are drugs that are included in the “control group” which
have very high signals for the event of interest, the denominator would be inflated, which in turn would dilute
the association that is the target of the particular analysis. Maybe some effort should be put into trying to
define what group of drugs or events should be included in a specific analysis. This might include some sort
of grouping by defined similarities, for example, or just following the same group of drugs across the different
time periods.

As we have commented in several occasions, it is important to keep in mind that none of the conclusions
that we obtain with these disproportionality methods should be interpreted as causal since there is no properly
controlled randomized experiment involved. These methods can be useful as detectors of possible association
between specific drug-adverse event combinations, that is, signals that can be identified for further study in a
medical context.
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4 Longitudinal signal detection

In this section we look at the historical score for a particular drug-adverse event combination. This serves
as a reference for the physicians to judge whether the current score is off the track. We analyze the three
drug-adverse event combinations that will be described in more detail in Section 5, namely Avandia & my-
ocardial infarction, Finasteride & sexual dysfunction, and Thiazolidinedione & macular edema, from the first
quarter of 2004 to the first quarter of 2012 (33 quarters overall). An EBGM score is calculated for each
case, for each quarter. We decided to focus on the analysis of the EBGM scores because of its shrinkage and
smoothness properties discussed in Section 3. We are particularly interested in whether there was a signal of
disproportionality from the trend in the past. In this section, we present the methods that were developed in
order to deal with this longitudinal analysis, and in Section 6.2 we discuss the results of applying them on our
three case studies.

Our starting point is a time series of scores (say EBGM) for a specific drug-adverse event combination,
which we denote by {Xi}Ni=1, where i corresponds to the time period and N is the total number of time periods
considered. If one were to plot it, by simply looking at the curve one would be able to spot certain spikes that
might be deemed as signals. To conduct a more rigorous longitudinal analysis, we propose three novel ways
to quantify sudden spikes that may potentially be signals: a method based on percent changes across time, a
parametric approach and a non-parametric approach.

4.1 Method 1: Percent change in disproportionality score, relative to moving
average

One way to quantify a sudden spike in a time series of disproportionality scores is to look at percent change
in the score relative to the past. We can compare the score to a moving average of, for example, 1 year of
scores. Percent change would thus be calculated as change relative to the average of the past 4 quarters:

Percent change = Xi

(
Xi−1 +Xi−2 +Xi−3 +Xi−4

4

)−1

− 1

Percent changes above some value, say 100% (that is, a doubling in value) may be considered worthy of
investigation.

4.2 Method 2: Parametric approach

For the parametric approach, assume that the time series data {Xi}Ni=1 comes from a Gaussian distribution.
If no trend occurs, {Xi}Ni=1 would be independent observations from a N(µ, σ) distribution. If there is a
upward signal at time point τ + 1, then {Xi}τi=1 ∼ N(µ, σ) independently, and Xτ+1 would fall in the upper
tail of Gaussian distribution. To implement this method, we assume that no signal occurs for the first four
time points (which are used as a baseline). Starting from the fifth time point, we decide whether the current
value is within two standard deviations of the mean. If so, we include that time point into the baseline, and
re-estimate the mean and variance for the Gaussian distribution for further detection. If not, we report a
signal. This sequential procedure continues until a signal is reported, that is, until the current time point
is outside two standard deviations of the mean, where the mean and standard deviation are both estimated
based on all the previous values.

4.3 Method 3: Nonparametric approach

The third algorithm we propose is the bootstrap approach. The key idea is as follows: if no trend occurs, we
would expect the slope from the ordinary least squares (OLS) fit to be close to zero. On the other hand, if an
upward trend occurs, we would expect the slope to be positive. To implement the method, again assume that
the first four points do not show any trend. Starting from the fifth time point, we compute the OLS slope using
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all the previous points and the current point. Its value is recorded as our test statistic. Next, we bootstrap
from the previous points, say 10000 times, and compute the OLS slope each time. The p-value is calculated
by computing the proportion of simulated slopes that are greater than our slope statistic. If the p-value is
small, say less than 0.05, evidence exists that an upward trend is highly likely to occur. On the other hand, if
the p-value is relatively large, we do not have evidence of an upward trend, and we include the current time
point in the baseline group and proceed to check the next time point. This sequential procedure continues un-
til a p-value is under a pre-defined threshold. The most commonly used threshold is a 0.05 level of significance.

In the end, these three methods may serve the following two purposes. First, they can be used to examine
whether there was a signal in the past (for example, in a retrospective study to decide whether there was
enough information to have captured certain signals before the public health situation became more difficult).
Secondly, they can be used sequentially to determine whether the current time point is a signal or not. None
of these methods detect multiple signals, which is an issue that generates another direction for future research.

5 Case studies

For each of our case studies, the goal is to examine the AERS data for evidence of reporting disproportionality
in the given adverse event for patients taking the drug in question. In our first two case studies, the FDA
issued a warning once the drug was on the market for a significant period of time10. Is is possible to detect a
signal in the AERS data prior to the time of the FDA warning? Using the AERS data, how early could this
potential link have been recognized? In our third case study, we examine an Adverse Event/Drug combination
that has been documented in a recently published clinical trial, but has not resulted in FDA action. Can we
find evidence in the AERS data to support the findings of this trial? Based on what we discover, can we make
a recommendation to regulators about adding a warning?

5.1 Case Study 1: Avandia and Myocardial Infarction

The diabetes drug Avandia (Rosiglitazone) went on the market after FDA approval in 1999. The drug became
popular; sales of the drug from GlaxoSmithKline peaked in 2006 at $3.2 billion in the United States that year
[15]. In May 2007, the FDA issued a safety alert for the drug due to potential increased risk of heart attack.
In 2010, the drug was suspended from the European market and the FDA severely restricted its use [15].
Pre-market clinical trials of Avandia showed no evidence of increased risk of heart attack; however, 8 years
after the drug was approved, the FDA found enough evidence to lead to a warning contraindicating high risk
patients and shortly thereafter, the drug was all but taken off the mass market.

There are two goals related to this case study. The first is to exemplify, via an analysis of the data for
the first quarter of 2012, the consequences of stratification by age and gender. These results are presented in
Section 6.1. The second goal is to analyze AERS data prior to the 2007 FDA warning for signal detection.
We will apply our proposed trend analyses and the results are summarized in Section 6.2.1.

5.2 Case Study 2: Propecia and Sexual Dysfunction

Finasteride is a drug marketed as Propecia to treat male pattern baldness and Proscar to treat englarged
prostate. Proscar went on the market in 1992 and Propecia in 1997. Pre-market clinical trials showed small
but significant amount of sexual dysfunction [11]. The results of these trials were reported on the original
label, however, in April 2011 and again in April 2012, the FDA revised the drug label to include new warnings
that these drugs carry a potential risk of long-term sexual dysfunction. The goal in this case study is to look
for evidence of disproportionality in reporting of sexual side effects in patients who reported taking Propecia
prior to April 2011, and the results are discussed in Section 6.2.2.

10All specific drug label information below was retrieved from the Drugs-at-FDA website:
http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm. Leads to possible drug/AE combinations were found
at the Pharmaceutical Drug Litigation Updates website: http://www.drug-injury.com/drug injury.
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5.3 Case Study 3: Thiazolidinediones and Macular Edema

Thiazolidinediones are a class of diabetes drugs that include Avandia (Rosiglitazone) and Actos (Pioglitazone).
Macular Edema is an eye disease sometimes seen concurrently with diabetes; it is the leading cause of blindness
in in diabetes patients. In July 2012, a retrospective cohort study of 103, 368 diabetic patients was published
which found an increased risk of macular edema at 1-year and 10-year follow-up evaluations. Prior to this study,
others that have investigated this link have found no causal evidence [10]. Post-market spontaneous reporting
of Macular Edema is listed on the Avandia label; however, the FDA has not issued any warning regarding this
particular drug/AE combination. The goal for this case study is to look for evidence of disproportionality in
reporting of macular edema in patients who reported taking Avandia or Actos, and the results can be found
in Section 6.2.3.

6 Results

6.1 Case Study 1: Avandia vs. Myocardial Infarction.

6.1.1 Description of datasets

Avandia has been brought under the scanner of the United States Food and Drug Administration (US FDA)
in the context of adverse events related to Common Cardio Problem. FDA suspected that this drug yielded
an unexpectedly large amount of heart related problems, thus issued a warning in the fourth quarter of 2007.

Is Avandia really that risky? By analyzing the retrospective data of the first quarter of 2012 that is publicly
available in the US FDA Adverse Events database, it seems that Avandia deserves tremendous attention from
physicians and drug manufacturers.

We begin by analyzing Avandia and each of the adverse events recorded in the database. There are 1136
Avandia-related adverse events. For each of the Avandia-related adverse event, we essentially compute its
disproportionality, defined as observed counts/expected counts. Intuitively, if the observed count for a par-
ticular Avandia-adversed event pair is way higher than its expected count, it sends out alarms for investigation.

To serve this purpose, four methods are being used, namely PRR, ROR, BCPNN and EBGM. All of the
four methods are based on analyzing the 2× 2 contingency table(Table1) for each Avandia-adverse event pair.

After each pair is scored using those four methods, we rank the scores from highest to lowest. Results show
that the four methods are in general consistent in the sense that four methods give similar ranking. Below
are the top 10 Avandia-adverse related events rankings according to EBGM.

Surprisingly, all of these adverse events are cardio related problems, indicating a strong warning that in-
vestigation be taken.
Moreover, we analyze Avandia-related adverse events by age and gender. We bracket age by classifying people
with age 65 as old people, and age below 65 as young people (though most people in that group are mid-aged).
This stratification is instructive because it may be that certain adverse events needs to be alerted for a specific
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subgroup, while it is not a concern for another subgroup. In this study, we create subgroups of old people,
young people, female and male. We also dig further by looking at old female, old male, young female and
young male. All four scores are calculated and compared. We define it as our ungrouped dataset.
We also conduct another interesting study by subsetting all the drugs that were reported common cardio
adverse events. This excludes irrelevant drugs in the study, and compares Avandia with all other drugs as-
sociated with common cardio adverse events. The group of common cardio adverse events is defined as the
top 10 cardio related adverse events. By repeating the same stratification in the last paragraph, we create
subgroups of old people, young people, female and male, old female, old male, young female and young male.
All four scores are calculated and compared. And we define this as our grouped dataset.

The following tables and plots will give us more details and results.

6.1.2 Results of the analysis for the first quarter dataset of 2012 from AERS

• Combination of Avandia and cardiac disorder adverse event in the ungrouped dataset.

The four association measures - EBGM, IC, ROR, and PRR - of the combination of Avandia drug and
cardiac disorder adverse event are computed using data from the first quarter of 2012. First of all, we deleted
the pairs which have the counts that are less than 10. For the specific drug Avandia, there are 106 related
adverse events. After stratifying by gender, there are only 39 related adverse events for female and 56 related
adverse events for male. Only stratifying by age, there are 26 related adverse events left for old people while
40 for young people. Finally, we also stratified the dataset by gender and age at the same time, obtaining just
13 related adverse events for females under the age of 65, 12 for females over the age of 65, 13 for males over
the age of 65, and 25 for males under the age of 65. We choose one cardiac related AEs (cardiac disorder) to
show how the AE acts differently in different strata.

Figure 3: Avandia Use and Common cardiac disorder

Figure 3 shows that the scores calculated for people under 65 years of age are higher than those for people
over 65 years old, and there is a slight difference between the male and female. The last group which is
stratified by gender and age also shows that females under 65 years of age and males under 65 years of age
have much larger scores than the females and males over 65 years old. The picture indicates that young people
may be more prone to getting a cardiac disorder event than the older people when they take Avandia at the
same time and same dose. This difference is not very clear between males and females. This stratification
shows that probably an association with younger age groups is the main reason for the increase the total score
as obtained from the non stratified database.

• Combination of Avandia and cardiac disorder adverse event in the grouped dataset.

For the result of the ungrouped dataset, we found out that 7 out of the top 10 high score Avandia-AE
pairs are cardiac related, hence we are assuming that Avandia is more likely related to cardiac adverse events.
It is reasonable for us to see how the score be changed in different strata. Therefore we chose the top 10
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high Avandia related cardiac adverse events, and take them as a group named “COMMON CARDIO”, and
we keep the rest AEs as the same. Again, we deleted the pairs which have the counts that are less than
10. So in the grouped dataset, there are 98 adverse events in total. And stratified by gender, there are 23
related adverse events for female and 51 related adverse events for male. And stratified by age, there are
24 related adverse events for old while 25 for young. And we also stratified the dataset by gender and old,
so there are 13 AEs for young female, 12 for old female, and 13 for old male and 23 related AEs for young male.

Figure 4: Avandia Use and Common cardiac disorder

For each group, we used four methods to get the score (EBGM IC ROR and PRR). We choose the
“COMMON CARDIO” AE to see how the AE acts differently in different strata. Figure 4 shows that the
young people have a higher score then the old people; and there is a slight difference between the gender
groups; the last group which is stratified by gender and age also shows that young female and young male
have much larger scores then the old female and old male. And RPR and ROR score of young female are
much larger than the score for young male. The plot indicates that young people may more likely to have a
cardiac disorder than the old people when they take Avandia. But the difference is not very obverse between
male and female. So it probably the young people, especially young female, that increase the total score.

• Summary. From the two groups of dataset, the scores of the grouped AE dataset are higher than the
scores of the ungrouped AE dataset. we get pretty much the same result, that is young people are
more likely to have a cardio related adverse event compare to old people while there is little difference
between male and female. Also, by comparison, the difference between EBGM, ROR, and PRR for the
whole dataset group is less than the difference for the “young” group which suggests that examining the
data by different demographic factors, such as age and gender, would lead to better results of detecting
signals of drugs.

• Limitations and future directions: This study suffers from several limitations. First of all, we do not have
the BMI for each patient. BMI may be an important factor to stratify. Second, the data is a collection
of spontaneous response from physicians and patients, which may suffer from sampling bias. Third, it
would be better if drugs are classified, for example, by biological component and chemical component.
Studying how these two types of drugs relate adverse events would be an interesting and meaning topic.
Lastly, it might be worthwhile to include all the drug-adverse event pairs in the ranking.

6.2 Time trend analysis

6.2.1 Case Study 1: Avandia and Myocardial Infarction

The quarterly AERS data allows us to analyze disproportionality measures longitudinally. Here we plot dis-
proportionality measures for all time points preceding the issue of the FDA warning on Avandia regarding
heart attacks.

The four methods produce very similar results. The only noticeable difference is that he EBGM does not
spike as high in 2006 Q4, perhaps because this measure is less sensitive to small changes in the number of
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Figure 5: Myocardial Infarction linked to Avandia Use

drug/AE pairs reported (i.e. small changes in the number n00).

The FDA warning was issued after the first quarter of 2007. With the benefit of hindsight we can interpret
the spike in the fourth quarter of 2006 as a signal. Indeed this is consistent with what we see in the plot;
before 2006 Q4, the disproportionality rates hover around 1 (no disproportionality) and then in 2006 Q4, they
suddenly double.

For reasons discussed earlier, we pick the EBGM score to use in our longitudinal analysis. We employ
our methods of longitudinal data analysis on EBGM score with the results in 2. The percent change and
deviation from the mean methods successfully identify 2006 Q4 as the first time point to produce a signal; the
non-parametric trend method does not identify a signal until 2007 Q2. Notice that all three methods produce
results starting in 2005, that is, only after 4 initial time points. At least 4 time points are needed to calculate
baseline statistics from which measures of change are determined.

6.2.2 Case Study 2: Propecia and Sexual Dysfunction

In the Finasteride/Sexual Dysfunction case study, the 4 disproportionality methods produce different results.
The PRR and ROR scores overlap almost precisely, and they are both more sensitive to changes in number of
reported drug/AE pairs, hence they produce dramatic spikes. The EBGM and IC methods follow the same
trend as the frequentist methods, but produce smoother curves.

Again, we choose EBGM scores for further investigation. The plot of EBGM score over time shows a few
spikes that may potentially be signals: 2008 Q3, 2010 Q1 and 2011 Q3 stand out to the naked eye. The FDA
added sexual dysfunction to the Finasteride label after 2011 Q1 so we are most interested in detecting signals
at 2008 Q3 and 2010 Q1.

The percent change method detected two signals prior to the one we expect to see at 2008 Q3 (see 3.
The percent change is 169% at 2006 Q2 and 220% at 2006 Q4. This algorithm successfully detected 2008 Q3
(249%) and 2010 Q1 (144%), as well as the last three time points on the plot (283%, 190%, 179%).
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Figure 6: Sexual Dysfunction linked to Finsteride Use

Figure 7: Sexual Dysfunction linked to Finasteride Use
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Time Method 1 (% change) Method 2 (p-value) Method 3 (p-value)
2005Q1 17% 0.66 0.98
2005Q2 0% 0.94 0.98
2005Q3 -11% 0.52 0.76
2005Q4 -32% 0.31 0.55
2006Q1 0% 0.91 0.52
2006Q2 -7% 0.56 0.42
2006Q3 -8% 0.46 0.23
2006Q4 88% 0.02 0.88
2007Q1 -47% 0.13 0.48
2007Q2 386% <0.001 <0.001

Table 2: Avandia/Myocardial Infarction: Longitudinal signal detection results (EBGM)

The parametric method successfully detected 2008 Q3 and 2010 Q1 as well as the last three time points
(p<0.001). It did not detect any other time points. Finally, the non-parametric trend method only detected
a signal in 2009 Q1, two time points after the initial spike in 2008.

To summarize, in this case we see that, while the percent change method successfully detected the signals
we expected, it was too sensitive to small changes in score and detected two signals erroneously. The non-
parametric trend test lagged behind and only detected a signal two time points after one occurred and the
parametric method successfully detected the signals we expected and no others.

6.2.3 Case Study 3: Thiazolidinediones and Macular Edema

In the Thiazolindinedione/Macular Edema case study, we see again that while the 4 disproportionality meth-
ods follow the same trends, they produce different results that are due to the PRR and ROR scores being
more sensitive to small changes. Overall, we see more variability over time in this drug/AE pair, with scores
suddenly spiking, even on the smoothest curve (EBGM). This drug/AE pair presents the most challenging
scenario of signal detection of the three cases.

Recall that evidence of the link between Thiazolidinediones and Macular Edema was published very re-
cently and the FDA has not made a recommendation nor added a warning regarding this link. Any signals
detected in this data could potentially be worth investigation. To the naked eye, 2006 Q1, 2010 Q1 and 2010
Q3 stand out as potential signals. 2004 Q2 is also a spike, but will not be detected by our methods as it in
the set of first 4 measures and must be used to calculate baseline statistics.

2006 Q1 is detected as a signal by the percent change method (678%) and the parametric method (p<0.001),
but not by the non-parametric trend method. The non-parametric trend method picks up 2006 Q4 as a signal,
again a few time points behind.

We note here that the non-parametric trend method, while not good at picking up single time point spikes,
works well to detect signals where several time points in a row have an elevated score compared to the past,
as in 2006 Q1-Q4 here.

2010 Q3 is detected by both the percent change method (235%) and the parametric method (p<0.001).
2009 Q4 is only detected by the percent change method (166%). For this time point, we cannot judge whether
the sensitivities of percent change and deviation from the mean are too high or too low, since we can only
speculate as to whether this time point represents a ’real’ signal.
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Figure 8: Macular Edema linked to Thiazolidinedione Use

Figure 9: Macular Edema linked to Thiazolidinedione Use
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Time Method 1 (% change) Method 2 (p-value) Method 3 (p-value)
2005Q1 5% 0.95 0.46
2005Q2 6% 0.78 0.58
2005Q3 -53% 0.39 0.43
2005Q4 -56% 0.33 0.27
2006Q1 84% 0.25 0.14
2006Q2 169% 0.58 0.27
2006Q3 33% 0.45 0.24
2006Q4 220% 0.23 0.53
2007Q1 23% 0.85 0.62
2007Q2 55% 0.26 0.86
2007Q3 -27% 0.86 0.91
2007Q4 41% 0.17 0.69
2008Q1 -90% 0.18 0.88
2008Q2 6% 0.73 0.95
2008Q3 249% <0.001 0.17
2008Q4 53% 0.09 0.11
2009Q1 75% 0.02 0.02
2009Q2 -29% 0.56
2009Q3 -71% 0.61
2009Q4 -79% 0.41
2010Q1 144% <0.001
2010Q2 -15% 0.89
2010Q3 106% 0.04
2010Q4 19% 0.22
2011Q1 56% 0.01
2011Q2 29% 0.05
2011Q3 283% <0.001
2011Q4 190% <0.001
2012Q1 179% <0.001

Table 3: Finasteride/Sexual Dysfunction: Longitudinal signal detection results (EBGM)

By carefully observing the time point at which a signal was detected, we find interestingly that the boot-
strap approach does not detect a signal as fast as the parametric approach. This is mainly due to the nature of
non-parametric bootstrap: by having fewer assumptions, we lose efficiency. On the other hand, this conserva-
tiveness gives more reliable results. The parametric approach, however, detects a signal quickly, but it suffers
when the assumption may not be valid and is more likely to give false signals than the bootstrap approach.

6.3 Simulation

In this section, we show attempt numerical experiments of the approaches listed above in Section 3 using sim-
ulated data. Because the uncertainty and complexity of the real data described previously is very challenging,
a more clear insight could potentially be obtained through simulations where the truth is known. This is
especially important because there is no gold standard for signal detection techniques in the literature. In
addition, little work has been conducted regarding simulation in the pharmacovigilance field. Three recent
papers proposed simulation of data generation processes but with very different philosophies [13], [14], [3]. In
our case, we address this issue in a different way with many interesting outcomes.
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Time Method 1 (% change) Method 2 (p-value) Method 3 (p-value)
2005Q1 -70% 0.58 0.66
2005Q2 -9% 1.00 0.75
2005Q3 28% 0.77 0.6
2005Q4 -34% 0.58 0.55
2006Q1 678% <0.001 0.52
2006Q2 53% 0.44 0.42
2006Q3 96% 0.10 0.15
2006Q4 61% 0.07 0.04
2007Q1 -54% 0.96
2007Q2 -59% 0.74
2007Q3 10% 0.64
2007Q4 -39% 0.85
2008Q1 -83% 0.31
2008Q2 -1% 0.83
2008Q3 -70% 0.38
2008Q4 24% 0.73
2009Q1 -62% 0.35
2009Q2 61% 0.87
2009Q3 44% 0.77
2009Q4 166% 0.42
2010Q1 30% 0.90
2010Q2 53% 0.43
2010Q3 235% < 0.001
2010Q4 -49% 0.97
2011Q1 -52% 0.86
2011Q2 -41% 0.96
2011Q3 -42% 0.97
2011Q4 -32% 0.68
2012Q1 -43% 0.56

Table 4: Thiazolidinedione/Macular Edema: Longitudinal signal detection results (EBGM)

6.3.1 Data generation

Unlike previous work by Ahmed, et al. [3], which suggests generating data in terms of number of events, our
starting point is to generate data in terms of the patient’s reporting mechanism.

We assume the distribution of one adverse event AEj , j ∈ {1, · · · , J} from a patient’s report follows a
Bernoulli distribution with success probability pAEj . The probability pAEj in the Bernoulli distribution for
patient N is determined by the following equation:

pAEj
(N) = Prob(AEj |patient N) =

1
e−(β0+β1x1+...+βIxI) + 1

(1)

where xi ∈ {0, 1}, i = 1, . . . , I is an indicator for whether the patient is using drug i. Let βi, i ∈ {1, · · · , I}
denote the coefficients of the drug effect to a particular AE. The larger value of βi, the higher the effect drug
i has on AEj . Let β0 denote the constant, which could be viewed as the background noise in the simulation.

Instead of directly generating counts for each drug-event combination, we first generate the patient reports,
each with a number of drugs and AEs. The counts of each drug-event combination will then be calculated
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from the patient’s report.

For all simulations, we consider the number of drugs to be J = 4, and I = 4 the number of AEs. We will
generate information for 10, 000 patients. Our simulation study consists of the following scenarios:

CASE 1. The reporting of adverse events are completely random, and independent with any possible factors.
Without loss of generality, we assume AEj , j ∈ {1, · · · , J} has 50% probability to appear in a patient’s report.

CASE 2. The chance of appearance of AEj , j ∈ {1, · · · , J} depends on the Bernoulli distribution described
in (1). In CASE 2, we fix β0 = −2.2, and the other coefficients are given in Table 5. In this setup, AE1 is
mainly dominated by drug1, AE2 is mainly dominated by drug2, AE3 is mainly dominated by drug1, drug2
and drug3, and AE4 is dominated by drug1, drug2, drug3 and drug4.

β1 β2 β3 β4

AE1 2.00 0.00 0.00 0.00
AE2 0.00 2.00 0.00 0.00
AE3 1.50 1.50 2.00 0.00
AE4 1.50 1.50 1.50 2.00

Table 5: Coeffients in simulation CASE II.

CASE 3. In this case, we increase the first cell coefficient in the above table, and others remain the same
(Table 6). In this case, the influence of AE1 by drug1 increases from 37.75% to 78.58%. Compared to CASE

β1 β2 β3 β4

AE1 3.80 0.00 0.00 0.00
AE2 0.00 2.00 0.00 0.00
AE3 1.50 1.50 2.00 0.00
AE4 1.50 1.50 1.50 2.00

Table 6: Coeffients in simulation CASE III.

II, in CASE III the probability of the drug-event combination drug1 −AE1 is increased.

CASE 4. In this case, we increase every cell from Table 6, which means the counts of every drug-event
combination increases significantly (Table 7). In CASE IV, the probabilities of all counts have a very large

β1 β2 β3 β4

AE1 3.80 0.00 0.00 0.00
AE2 0.00 3.80 0.00 0.00
AE3 2.50 2.50 3.80 0.00
AE4 2.50 2.50 2.50 3.80

Table 7: Coeffients in simulation CASE IV.

jump.

For each individual case from the setup above, we generated 50 datasets. Then for each dataset we used
the four disproportionality methods described in Section 3 to obtain the PRR, ROR, EBGM, and BCPNN
scores for each drug-AE combination, and finally we calculated the mean and variance across the 50 datasets
(to account for simulation variability).
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6.3.2 Simulation results

Tables 8, 9, 10 and 11 in the Appendix show the results for CASE I, II, III, and IV, respectively. Every
drug-event combination is listed in the results table for the four drugs and four AEs under consideration.
Columns N00 through N11 are the corresponding cells in the 2 × 2 contingency table pictured in Table 1.
The columns EBGM, IC, PRR, and ROR correspond to the measures of disproportionality calculated for each
drug-adverse event combination through each of those four methods, and are shown here together with their
standard deviation.

In Table 8, since the assumption for the simulation was that adverse events and drugs are reported com-
pletely at random and independently, the values of EBGM all equal one for every drug-event combination.
Similar results occur for the other three methodologies: IC, PRR, and ROR. There is no sign of dispropor-
tionality in our simulation CASE I, as expected.

In Table 9, the probability of drug1 − AE1 is around 30%. This is reflected from N00 in the first row.
However, the EBGM is still very close to 1, and PRR and ROR do not change significantly. In Table 10, the
EBGM, PRR and ROR are still close to 1, which indicates that all existing algorithms have difficulty detecting
the signal change, even when the probability changes dramatically. In Table 11, we obtained similar results for
EBGM, PRR and ROR, although they have a slightly higher volitality than the results before. Although the
counts in N00 have increased significantly compared to Table 9, the signal detection approaches have failed to
find these changes.

Through this simulation, we found some potential issues to look into regarding those existing approaches.

• None of these approaches take drug-drug interactions into consideration. The only difference between
CASE II and CASE III is that the probabilty of AE1 caused by drug1 changes from 37.75% to 78.58%.
In Table 10 and 11, the N00 value for drug1-AE1 changes from 1378.54 to 2273.06, which is an expected
increase since we increase the probability of occurrence. However, the N10 value for drug1-AE1 also
changes from 4072.8 to 7051.20, which is a big change and dilutes the signal. The reason behind this
phenomenon is that some patients take other drugs besides drug1; however, once they have an AE1
event, this event will also be counted into the “other drugs” effect even if the real reason is only drug1.

• The pool of all drugs and all AEs will affect the results greatly. In our simulation study, we only con-
sidered 4 drugs and 4 AEs. In this case, we have the same scale of values from N00 to N11. However,
in the AERS data, the total number of drugs and AEs are extremely large, and the consequence of this
is that the N00 number can be very small compared to N10, N01, and N11. For example, N00 could be
just 100, whereas N10, N01, and N11 are all in the millions. This case actually raises a very important
question, which is how to choose the pool of drugs and AEs against which to make the comparisons. Is
it more reasonable to try to include as many drugs and AEs as possible, or should we only select those
drugs and AEs that are known to be related (say because of their chemical content or because of the
known classification of events by system-organ class)?

• The probability of AEs appearing as a consequence of taking a specific drug in our simulation ranges
from 10% to 90%. However, in the AERS dataset the probability of AEs appearing is very low, say 1%.
All the existing approaches we studied fail to detect the disproportion in our simulation when the prob-
ability is high. We should direct more attention on how to assess the performance of those approaches
and how they compare to each other. The high chance of certain events appearing should be reflected
by those methods even in special situations, such as those fabricated in our simulation.
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6.3.3 Conclusions from simulation

The main purpose of our simulation was to try to compare and contrast the results that are provided by each
of the different methods. Since all the methods have different approaches and modeling techniques, we were
hoping that the simulation would shed some light into what those differences are, and maybe some of the
advantages and limitations of each. This could provide guidelines on what could be improved or modified to
get more significant results.

A comparison of all the disproportionality methods currently in use can be a valuable exercise, given
some sort of gold standard.We propose that in order to validate any results that may be obtained using
data mining techniques, a reference database with known drug-adverse event combinations is needed. The
information needed to construct this database could be obtained from studies published in the literature and
from information obtained through clinical trials. To the best of our knowledge, only a few examples exist in
the literature of databases constructed for this purpose (e.g. see [9]), and we strongly feel that this approach
should have a more widespread use.

7 Conclusions

In this project, we investigated the four most popular signal detection methods in the current literature: PRR,
ROR, MGPS, and BCPNN, and highlighted some of their advantages and limitations, as well as points for
improvement.

We also developed three novel algorithms for signal detection that incorporate the time factor into the anal-
ysis, allowing for a sequential determination of “importance of association” between specific drug-adverse event
pairs: one based in percent changes, a parametric approach, and a non-parametric approach. We conducted
analyses for three drug-adverse event combinations, namely Avandia & myocardial infarction, Finasteride &
sexual dysfunction, and Thiazolidinedione & macular edema. We found that the parametric approach is the
fastest to identify a potential signal, but it might be likely to produce more false positives. On the other hand,
the nonparametric approach seems to be more conservative (more evidence needs to accumulate in order for
it to detect a signal) which may make it more reliable, but it is slower than the parametric approach.

Additionally, we analyzed the Avandia & myocardial infarction pair for a specific period of time, highlight-
ing the importance of stratification on the demographic characteristics of the individuals reporting adverse
events. Finally, we did a simulation study to gain insight into the existing methods and to try to provide
a starting point for future studies, since we believe that validation of the performance of any data mining
algorithm is essential.

8 Future work and recommendations

There are many prospective lines of future work related to the signal detection problem. Some of them we
have already outlined in the paper, but here we make some additional recommendations.

The reliability of the dataset is a very important issue to keep in mind. To this respect, we believe that
much work can be put into homogenizing the names of the drugs and adverse events, and this can potentially
be addressed via language processing techniques. In addition, due to the importance of conducting stratified
analyses, more demographic covariates should be collected, as well as information related to the drug doses
and exposure times, which could be very valuable in dismissing spurious signals. We also propose including
other sources of information, such as results of clinical trials, epidemiological tracking information from the
CDC, or drug labels, in order to introduce some level of validation to the voluntary reporting system.

Other directions for future work lie in how to model interactions: both drug-drug interactions, and adverse
events with others. Some efforts have been made to introduce drug-drug interactions into existing methods
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by expanding the definition of “drug” to drug combinations [5]. There have also been attempts to use lo-
gistic regression to discover associations between drugs [12]. But these seem to suffer from the issue of high
dimensionality, so maybe clustering methods could be explored to this respect to reduce the dimensionality
of the data. In terms of the event associations, a possibility would be to include system organ class (SOC)
information into a hierarchical model as prior information.

A promising area of exploration lies in how to incorporate historical information into the modeling, since
a lot is learned in each time period and could be potentially used to estimate the background noise for future
time points.

Two final thoughts include taking into consideration the way in which the reports are submitted. First, it
could be promising to try to model the reporting mechanism and include it as prior information in a Bayesian
model, since in this way we take into account the uncertainty regarding the number of exposed individuals.
Secondly, weights could be added depending on the reliability of the agent submitting the report (clinicians,
patients, manufacturers), since we could have more confidence on the information provided by different sources.

In our opinion, there are several issues that remain problematic. One of them is the absence of a gold
standard against which to evaluate the performance of data mining and signal detection methods. Another
point for concern is the lack of validation and comparisons of the different methods.

Since there are no best practices or golden standard for signal detection, a great area of opportunity arises
for the development of analytical tools, but also for the misinterpretation of their results. It is important
to always keep in mind that no algorithm can replace the role of trained physicians, since signal detection
requires clinical judgement and knowledge of thresholds, but the methods can serve as initial indicators of the
possibility of associations between drugs and adverse events.

9 Appendix

Drug Event N00 N10 N01 N11 EBGM std IC std PRR std ROR std
drug1 AE1 2512.92 7505.46 7560.38 22496.18 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug1 AE2 2503.66 7507.38 7522.04 22541.86 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug1 AE3 2504.28 7509.60 7521.42 22539.64 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug1 AE4 2506.58 7525.06 7519.12 22524.18 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE1 2500.60 7517.78 7471.34 22585.22 1.00 0.01 0.00 0.01 1.00 0.01 1.01 0.02
drug2 AE2 2488.56 7522.48 7483.38 22580.52 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE3 2487.06 7526.82 7484.88 22576.18 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE4 2495.72 7535.92 7476.22 22567.08 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE1 2516.66 7494.38 7556.64 22507.26 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE2 2521.66 7492.22 7551.64 22509.42 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE3 2522.06 7509.58 7551.24 22492.06 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE4 2493.68 7524.70 7510.32 22546.24 1.00 0.01 -0.00 0.01 1.00 0.01 0.99 0.01
drug4 AE1 2502.16 7508.88 7501.84 22562.06 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug4 AE2 2500.88 7513.00 7503.12 22557.94 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug4 AE3 2507.28 7524.36 7496.72 22546.58 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug4 AE4 2511.18 7507.20 7514.52 22542.04 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01

Table 8: Simulation results for CASE I.
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Drug Event N00 N10 N01 N11 EBGM std IC std PRR std ROR std
drug1 AE1 1378.54 4072.80 7474.06 22023.86 1.00 0.01 -0.00 0.02 1.00 0.01 1.00 0.02
drug1 AE2 1357.76 4088.02 7349.08 22154.40 1.00 0.01 0.00 0.02 1.00 0.01 1.00 0.02
drug1 AE3 2688.20 8148.98 6018.64 18093.44 0.99 0.01 -0.01 0.01 0.99 0.01 0.99 0.01
drug1 AE4 3299.66 9915.30 5407.18 16327.12 1.00 0.00 0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE1 1352.06 4099.28 7331.90 22166.02 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.02
drug2 AE2 1344.94 4100.84 7339.02 22164.46 0.99 0.01 -0.01 0.02 0.99 0.01 0.99 0.02
drug2 AE3 2698.84 8138.34 5985.12 18126.96 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE4 3288.12 9926.84 5395.84 16338.46 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE1 1381.24 4064.54 7471.36 22032.12 1.00 0.01 0.00 0.02 1.00 0.01 1.00 0.02
drug3 AE2 2744.24 8092.94 6108.36 18003.72 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE3 3348.58 9866.38 5504.02 16230.28 1.00 0.00 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE4 1359.52 4091.82 7346.34 22151.58 1.00 0.01 0.00 0.02 1.00 0.01 1.00 0.02
drug4 AE1 1361.84 4083.94 7344.02 22159.46 1.00 0.01 0.01 0.02 1.00 0.01 1.01 0.02
drug4 AE2 2705.90 8131.28 5999.96 18112.12 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug4 AE3 3278.60 9936.36 5427.26 16307.04 1.00 0.00 -0.01 0.01 0.99 0.01 0.99 0.01
drug4 AE4 1361.22 4090.12 7345.62 22152.30 1.00 0.01 0.00 0.02 1.00 0.01 1.00 0.02

Table 9: Simulation results for CASE II.

Drug Event N00 N10 N01 N11 EBGM std IC std PRR std ROR std
drug1 AE1 2273.06 7051.20 7292.50 22568.32 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug1 AE2 1379.28 4105.66 8489.42 25210.72 1.00 0.01 -0.00 0.02 1.00 0.02 1.00 0.02
drug1 AE3 2765.98 8230.90 7102.72 21085.48 1.00 0.01 -0.00 0.01 1.00 0.01 1.00 0.01
drug1 AE4 3359.40 10019.60 6509.30 19296.78 1.00 0.00 -0.00 0.01 1.00 0.01 0.99 0.01
drug2 AE1 2373.54 6950.72 7566.10 22294.72 1.00 0.01 0.01 0.01 1.00 0.01 1.01 0.01
drug2 AE2 1398.18 4086.76 8541.46 25158.68 1.00 0.01 0.01 0.02 1.01 0.01 1.01 0.02
drug2 AE3 2784.62 8212.26 7155.02 21033.18 1.00 0.00 -0.00 0.01 1.00 0.01 1.00 0.01
drug2 AE4 3383.30 9995.70 6556.34 19249.74 1.00 0.00 -0.00 0.01 1.00 0.01 0.99 0.01
drug3 AE1 1332.50 4152.44 8233.06 25467.08 0.99 0.01 -0.01 0.02 0.99 0.01 0.99 0.02
drug3 AE2 2690.52 8306.36 6875.04 21313.16 1.00 0.01 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE3 3269.48 10109.52 6296.08 19510.00 1.00 0.00 0.00 0.01 1.00 0.01 1.00 0.01
drug3 AE4 2313.62 7010.64 7497.56 22363.26 0.99 0.01 -0.01 0.01 0.99 0.01 0.98 0.01
drug4 AE1 1374.98 4109.96 8436.20 25263.94 1.00 0.01 0.00 0.02 1.00 0.01 1.00 0.02
drug4 AE2 2755.76 8241.12 7055.42 21132.78 1.00 0.00 0.00 0.01 1.00 0.01 1.00 0.01
drug4 AE3 3366.82 10012.18 6444.36 19361.72 1.00 0.00 0.01 0.01 1.01 0.01 1.01 0.01
drug4 AE4 2364.04 6960.22 7504.66 22356.16 1.01 0.01 0.01 0.01 1.01 0.01 1.01 0.01

Table 10: Simulation results for CASE III.
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