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Abstract

In this work, we propose a method to quantify the uncertainty of wavefield reconstruction inversion
under the framework of Bayesian inference. Unlike the conventional method using the wave equation
as the forward mapping, we involve the wave equation misfit in the posterior distribution and propose
a new posterior distribution. The negative log-likelihood of the new distribution is less nonlinear than
that of the conventional posterior distribution, and its Gauss-Newton Hessian is a diagonal matrix
that can be generated without any additional computational cost. We use the diagonal Gauss-Newton
Hessian to derive an approximate Gaussian distribution at the maximum likelihood point to quantify
the uncertainty. This method makes the uncertainty quantification for WRI computationally tractable
and is able to provide reasonable uncertainty analysis based on our numerical results.



Introduction
Full-waveform inversion (FWI) (Tarantola and Valette, 1982a; Virieux and Operto, 2009) is a popular
method in seismic exploration that uses the waveform information to reconstruct subsurface structure.
However, conventional FWI suffers from nonlinearity and local minima due to the elimination of the PDE
constraint in the optimization problem. Wavefield reconstruction inversion (WRI) (van Leeuwen and
Herrmann, 2013; Peters et al., 2014) is a new approach of full-waveform inversion (FWI) that reduces the
nonlinearity and lessens the effect of local minima. Instead of explicitly solving the wave equation, WRI
relaxes the wave equation constraint by proposing a penalty formulation that explores both model and
wavefield spaces. By exploiting this larger space, WRI reduces the likelihood of reaching local minima.
Moreover, compared to conventional FWI, whose Gauss-Newton Hessian is typically a dense matrix, the
corresponding Gauss-Newton Hessian of WRI is a diagonal matrix and can be generated without any
additional cost once the wavefield is computed (van Leeuwen and Herrmann, 2013).

Statistical inversion aims to obtain the posterior distribution given the distribution of the observed data
and prior model information (Tarantola and Valette (1982b)) and quantify the uncertainty based on the
posterior distribution. However, quantifying the uncertainty for the conventional FWI is difficult. The
forward mapping involving explicit PDE solves is very expensive computationally, which renders Markov
chain Monte Carlo type methods intractable. Moreover, due to the strong nonlinearity of the forward
mapping, it is also difficult to generate an approximate distribution for the conventional statistical FWI to
correctly quantify the uncertainty.

In this work, we propose a new posterior distribution, in which we use the wave equation misfit of
WRI. Compared to the conventional statistical FWI, the negative log-likelihood of this new posterior
distribution is “less nonlinear” and the Gauss-Newton Hessian, which is diagonal, is easy to obtain. These
properties allow us to be able to derive a Gaussian distribution that approximates the posterior distribution,
and quantify uncertainty based on this approximate distribution. No additional computational cost related
to sampling and estimating the Gauss-Newton Hessian is required, unlike for the standard FWI case. This
makes the method computationally feasible to quantify the uncertainty of WRI. Numerical experiments
illustrate that the uncertainty quantified by this method is reasonable.

Posterior Distribution for WRI
The deterministic wavefield reconstruction inversion is aimed at solving the following unconstrained
optimization problem (1),

min
u,v

F(u,v) = ∑
k,l
‖Pkuk,l−dk,l‖2

2 +λ
2‖Ak,l(v)uk,l−qk,l‖2

2, (1)

which aims to balance the PDE misfit A(v)u−q with the data misfit Pu−d, simultaneously over velocity
models v and wavefields u, for all shots indexed by k = 1,2, ...,Ns and a few relevant frequencies indexed
by l = 1,2, ...,N f . P is the operator that restricts wavefields to receiver locations, and q represents sources.
This joint optimization problem, as stated, is difficult to solve and requires a large amount of memory to
store all wavefields. One approach is to use the variable projection method (van Leeuwen and Herrmann,
2013) to reduce the number of parameters by finding optimal wavefields u for given velocity model v at
each iteration. As a result, the original joint optimization problem (1) is reduced to the problem (2), and
the optimal wavefield u is generated by solving the least-squares problem (3).

min
v

F(u(v),v) = ∑
k,l
‖Pkuk,l(v)−dk,l‖2

2 +λ
2‖Ak,l(v)uk,l(v)−qk,l‖2

2, (2)

(
λAk,l

Pk

)
uk,l =

(
λqk,l
dk,l

)
(3)

In this work, we use the same idea from deterministic WRI to derive the posterior distribution based on
the Bayesian inference. The conventional statistical FWI defines the posterior distribution as the product
of data misfit likelihood and prior distribution, which only considers the uncertainty of data. However,
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the forward modeling kernel also should contain uncertainty due to the fact that we do not fit the PDE
exactly. Based on this observation, we derive a new posterior distribution (4), which considers data misfit
likelihood (the first term), wave equation misfit likelihood (the second term) and the prior distribution (the
last term). Covariance matrices Σnoise, Σpde and Σprior reflect uncertainty level and statistics of data, wave
equation and prior model, respectively. Optimal wavefields u for fixed velocity model v are generated by
solving the least-squares problem (5). By involving the wave equation misfit, the negative log-likelihood
of eq. (4) is less nonlinear than that of conventional statistical FWI (van Leeuwen and Herrmann, 2013).

ρpost(v,u(v)) ∝ exp(−∑
k,l
‖Puk,l(v)−dk,l‖2

Σ
−1
noise
−λ

2‖Ak,l(v)uk,l(v)−qk,l‖2
Σ
−1
pde
−‖v−vprior‖2

Σ
−1
prior

) (4)

(
λΣ
−1/2
pde Ak,l

Σ
−1/2
noise Pk

)
uk,l =

(
λΣ
−1/2
pde qk,l

Σ
−1/2
noise dk,l

)
(5)

Quantify the Uncertainty
The posterior probability distribution (4) is essential for the uncertainty quantification. However, quanti-
fying statistical parameters based on (4) is extremely expensive because of the huge computational cost
of solving least-squares problem (5) and the high dimension of v. These properties renders traditional
MCMC methods, which require an enormous amount of PDE solves (on the order of 10000 objective
evaluations or more) in order to generate reasonable results, computationally intractable. An alternative
method is to use a Gaussian distribution at the MAP point to approximate the original distribution, which
is much cheaper to deal with than the posterior distribution (4).

The approximate Gaussian distribution for conventional FWI is difficult to generate because the Gauss-
Newton Hessian of the negative log-likelihood of the posterior distribution is dense and requires a large
number of PDE solves to calculate. On the other hand, the Gauss-Newton Hessian of the negative
log-likelihood of (4) is a diagonal matrix. Both the gradient and the diagonal Gauss-Newton Hessian can
be generated by eq. (6) and eq. (7) without additional computational cost, once we obtain wavefields u.
Using g and H, we are able to derive a quadratic approximation of the negative log-likelihood. Fig. 1
shows the comparison of the negative log-likelihood (green line) and its quadratic approximation (blue
line) at the MAP point in four different random directions. We can observe that around the MAP point,
the quadratic approximation matches the negative logarithm function quite well, which implies that
the approximate Gaussian distribution N (vMAP−H−1

MAPgMAP,H−1
MAP) is a good approximation to the

posterior distribution.

g = ∑
k,l

2λ
2diag(conj(uk,l))

∂Ak,l

∂v

T

Σ
−1
pde(Ak,luk,l−qk,l) (6)

H = ∑
k,l

2λ
2diag(conj(uk,l))

∂Ak,l

∂v

T

Σ
−1
pde

∂Ak,l

∂v
diag(uk,l) (7)

Numerical Experiment
We test our uncertainty quantification method for WRI on the BG compass model. The model size is
4.5km x 2km. The true model and initial model are shown in the Fig. 2. 91 sources are located at the
surface every 50m and 451 receivers are located at the surface every 10m. Ten frequency bands ranging
from {2,3,4}Hz to {29,30,31}Hz are used for the inversion. In this experiment, we assume that we know
the noise free mean of the data, which may not be available in the practical case, and generate it by a
9-point finite difference method. The standard deviation for the noise of data is 1, the standard deviation
for the PDE is 1 and the penalty parameter λ is selected to be 100. We assume that we do not have any
prior information so that we do not include the prior distribution.

We first solve the deterministic optimization problem to find the MAP point (Fig. 3a). Then we calculate
the gradient and Gauss-Newton Hessian at the MAP point and form the approximate Gaussian distribution.
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Figure 1: Comparisons of the true negative log-likelihood (green line) and the approximated quadratic
function (blue line) in four different random directions dv with step-size α .
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(b) Initial model

Figure 2: The true velocity model (a) and the initial velocity model (b).

The standard deviation (Fig. 3b) and confidence intervals (Fig. 4) are computed using our Gaussian
approximation to the true distribution. From the computed standard deviation, we observe that the
standard deviation at the deep and boundary areas of the model is higher than in other areas, which agrees
with our intuition. We also observe similar phenomena in the confidence interval results that the velocity
in deeper regions has a larger uncertainty compared to shallower regions. Both observations corresponds
to the fact that the observed data is less sensitive to the velocity in these areas.

In order to verify our uncertainty results, we invert five sets of data generated by adding noise according
to the prescribed noise distribution above. These five results are shown in the Fig. (4) with the initial
model (blue line), true model (green line) and MAP result (black line). All five of these results lie in the
confidence interval, which indicates that our results are reasonable.
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(a) Maximum likelihood point
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(b) Standard Deviation

Figure 3: The Maximum likelihood point (a) and the standard deviation of the inversion result (b). At the
deep part of the model and near the boundary, the velocity has large standard deviation since the observed
data influences the inverted model much less in these regions than in the rest of the model. At the shallow
part, the standard deviation is smaller, which shows less uncertainty at this area.
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(a) x = 1000m
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(b) x = 2500m
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Figure 4: Confidence interval (gray background) at lateral position x = 1000m, 2500m, and 3500m.
Green line - the true velocity, black line - the MAP result, blue line - the initial velocity and others -
inversion result from noisy data obeying the specified noise distribution. All inversion results lie within
the confidence interval we obtain.

Conclusion
In this work, we propose a method to quantify the uncertainty of wavefield reconstruction inversion by
introducing the wave equation misfit to the posterior distribution. This makes the negative log-likelihood
of the posterior distribution less nonlinear than in the FWI case and the diagonal Gauss-Newton Hessian
is straightforward and efficient to generate. We use this Gauss-Newton Hessian to derive an approximate
Gaussian distribution and quantify the uncertainty of the velocity model using this approximation. Since
the Gauss-Newton Hessian is diagonal, we avoid solving a large number of PDEs that would otherwise
have to be computed when estimating uncertainty for standard FWI. This method makes the uncertainty
quantification for WRI computationally tractable and can provide reasonable uncertainty results based on
the numerical experiments. Future work will focus on the situation that the noise free mean of data is not
available.
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